Skip to main content

Advertisement

Log in

Bond strength of experimental cyanoacrylate-modified dental glass ionomer cements

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glass ionomer cement (GIC) has been successfully used in dental field for more than 40 years. Despite numerous advantages of GIC, low bond strength and slow setting rate limited conventional GICs for use only at low stress-bearing areas. To improve bond strength to tooth, two kinds of cyanoacrylates such as ethyl 2-cyanoacrylate (EC) and allyl 2-cyanoacrylate (AC) were added in a commercial GIC. Changes in setting time of cyanoacrylate-modified GICs (CMGICs) according to the concentration of cyanoacrylates and/or p-toluene sulfonic acid (TSA) was investigated using a rheometer. Shear bond strength to human dentin was measured. Biocompatibility was determined by the viability of fibroblasts. Optimal concentrations for EC and TSA were 5–10% of the GIC powder and 30% of the GIC liquid, respectively. EC-based CMGIC showed twofold increase of initial bond strength compared with conventional GIC. Also, AC-based CMGIC showed three times higher bond strength and similar biocompatibility compared with the GIC. Therefore, CMGIC materials can be widely applied in dental adhesive restoration field because they showed improved bond strength and proper setting time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wilson AD, Kent BE (1972) Br Dent J 132:133

    Article  PubMed  Google Scholar 

  2. Dahl BL, Tronstad L (1976) J Oral Rehabil 3:19

    Article  PubMed  Google Scholar 

  3. Crisp S, Ferner AJ, Lewis BG, Wilson AD (1975) J Dent 3:125

    Article  PubMed  Google Scholar 

  4. Young AM, Sherpa A, Pearson G, Schottlander B, Waters DN (2000) Biomaterials 21:1971

    Article  PubMed  Google Scholar 

  5. Wilson AD, Nicholson JW (1993) Acid–base cements: their biomedical and industrial applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Katsuyama S, Ishikawa T, Fuji B (1993) Glass ionomer dental cement: the materials and their clinical use. Ishiyaku EuroAmerica, Saint Louis

    Google Scholar 

  7. Anusavice KJ (2003) Philips science of dental materials, 11th edn. Philadelphia, Saunders

    Google Scholar 

  8. Smith DC (1999) Oper Dent 5:177

    Google Scholar 

  9. Davidson CL (1999) Advances in glass ionomer cements. Quintessence Publishing Co., Chicago, USA

    Google Scholar 

  10. Mount GF (1994) An atlas of glass ionomer cements: a clinician’s guide, 2nd edn. Martin Dunitz, London

    Google Scholar 

  11. McLean JW, Nicholson JW, Wilson AD (1994) Quintessence Int 25:587

    PubMed  Google Scholar 

  12. Tanumiharja M, Burrow MF, Tyas MJ (2000) J Dent 28:361

    Article  PubMed  Google Scholar 

  13. Rusz JE, Antonucci JM, Eichmiller F, Anderson MH (1992) Dent Mater 8:31

    Article  PubMed  Google Scholar 

  14. Han MG, Kim SH, Liu SX (2008) Polym Degrad Stab 93:1243

    Article  Google Scholar 

  15. Chouinard F, Buczkowski S, Lenaerts V (1994) Pharm Res 11:869

    Article  PubMed  Google Scholar 

  16. Newman SM, Valadez SK, Hembreer JH (1978) J Prosthet Dent 40:422

    Article  PubMed  Google Scholar 

  17. Wiebelt FJ, Duncanson MG, Stratton RJ (1982) J Prosthet Dent 47:603

    Article  PubMed  Google Scholar 

  18. Bakland T, Baum L (1973) J Ga Dent Assoc 47:13

    PubMed  Google Scholar 

  19. Dilts W, Collard EW, Duncanson MG (1973) IADR Prog Abstr 53:47

    Google Scholar 

  20. Trabert RC, Caputo AA (1973) IADR Prog Abstr 53:50

    Google Scholar 

  21. Tomlinson SK, Ghita OR, Hooper RM, Evans KE (2007) Dent Mater 23:799

    Article  PubMed  Google Scholar 

  22. Hile LM, Linklater DR (2006) Ann Emerg Med 47:424

    Article  PubMed  Google Scholar 

  23. Jacobsen EL, Shugars KA (1990) J Endod 16:516

    Article  PubMed  Google Scholar 

  24. Guzm′an-Armstrong S, Mitchell RJ (2002) J Dent 30:113

    Article  Google Scholar 

  25. Beech DR (1972) J Dent Res 51:1438

    PubMed  ADS  Google Scholar 

  26. Beech DR, Kurer HG (1974) IADR Prog Abstr 54:1356

    Google Scholar 

  27. Akama Y, Kikuchi T, Nakamura Y, Noguchi H (1989) Shika Zairyo Kikai 8:706

    PubMed  Google Scholar 

  28. Pritykin LM, Lakiza OV, Niazashvili GA, Karmazin VB, Klimentova NV, Mager KA, Tutorskii IA, Vakula VL (1991) Polym Sci USSR 33:930

    Article  Google Scholar 

  29. Fink JK (2005) Cyanoacrylates, reactive polymers fundamentals and applications. Elsevier, Philadelphia

    Google Scholar 

  30. El-Askary FS, Nassif MS, Fawzy AS (2008) J Adhes Dent 10:471

    PubMed  Google Scholar 

  31. ISO (2003) ISO/TS 11405

  32. de Souza Costa CA, Hebling J, Garcia-Godoy F, Hanks CT (2003) Biomaterials 24:3853

    Article  PubMed  Google Scholar 

  33. Berridge MV, Herst PM, Tan AS (2005) Biotechnol Annu Rev 11:127

    Article  PubMed  Google Scholar 

  34. Beech P, Solomon A, Bernier R (1985) Dent Mater 1:154

    Article  PubMed  Google Scholar 

  35. Walls AW (1986) J Dent 14:230

    Article  Google Scholar 

  36. Shen C (2003) Glass ionomer cement in Dental cement. Phillips’ Science of Dental Materials, 11th edn. Elsevier, Philadelphia

    Google Scholar 

  37. Davidson CL, Feilzer AJ (1997) J Dent 25:435

    Article  PubMed  Google Scholar 

  38. Braunecker WA, Matyjaszewski K (2007) Prog Polym Sci 32:93

    Article  Google Scholar 

  39. Culbertson BM (2001) Prog Polym Sci 26:577

    Article  Google Scholar 

  40. Syrek A (2006) J Dent 34:615

    Google Scholar 

  41. DeRenzis FA, Aleo JJ (1970) Oral Surg Oral Med Oral Pathol 30:803

    Article  PubMed  Google Scholar 

  42. Colón I, Richoll SM (2005) J Pharm Biomed Anal 39:477

    Article  PubMed  Google Scholar 

  43. Doherty PJ (1991) Clin Mater 7:335

    Article  PubMed  Google Scholar 

  44. Costa CADS, Hebling J, Garcia-Godoy F, Hanks CT (2003) Biomaterials 24:3853

    Article  Google Scholar 

  45. Sasanaluckit P, Albustany KR, Doherty PJ, Williams DF (1993) Biomaterials 14:906

    Article  PubMed  Google Scholar 

  46. Wilson AD, GroRman DR, Kuhn AT (1985) Biomaterials 6:431

    Article  PubMed  Google Scholar 

  47. Swartz ML, Phillips RW, Clark HE (1984) J Dent Res 63:158

    PubMed  Google Scholar 

  48. Nicholson JW, Czarnecka B (2008) Dent Mater 24:1702

    Article  PubMed  Google Scholar 

  49. Beriat NC, Nalbant D (2009) Eur J Dent 3:267

    PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grant from National Core Research Center for Nano Medical Technology, Yonsei University (Grant R15-2004-024-00000-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Keun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, J.I., Lim, KJ., Lim, HN. et al. Bond strength of experimental cyanoacrylate-modified dental glass ionomer cements. J Mater Sci 45, 5211–5217 (2010). https://doi.org/10.1007/s10853-010-4560-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4560-y

Keywords

Navigation