Skip to main content
Log in

Dielectric properties of epoxy/short carbon fiber composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dielectric properties of epoxy/short carbon fiber composites at different concentrations 0, 5, 10 and 15% by weight, different thicknesses 2 and 4 mm, and frequency in the range from 20 Hz to 1 MHz were characterized. Scanning electron microscopy and differential scanning calorimetry were utilized. The alternating current (ac) electrical properties (complex impedance, dielectric constant, dielectric loss, real part of electric modulus, imaginary part of electric modulus, electrical conductivity, and relaxation time) were determined. It was found that the applied frequency, filler concentrations, and composite thickness affected the ac electrical properties of the epoxy/carbon fiber composites. The dielectric behaviors of the interfacial polarization between epoxy matrix and carbon fibers could be described by the Maxwell–Wagner–Sillars relaxation. The analysis of the complex electric modulus in the frequency range from 20 Hz to 1 MHz revealed that the interfacial relaxation followed the Cole–Davidson distribution of relaxation times. The universal power-law of ac conductivity was observed in the epoxy/carbon fiber composites. The calculated power exponent (near unity) is physically acceptable within this applied model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Navin C, Deepak J (2004) Bull Mater Sci 27:227

    Article  Google Scholar 

  2. Delmonte J (1990) Metal/polymer composites. Van Nostrand Reinhold, New York

  3. Neelakanta PS (1995) Handbook of electromagnetic materials. CRC Press, Boca Raton

    Google Scholar 

  4. Surendra K, Neeti S, Ray BC (2009) J Reinf Plast Compos 28:16

    Google Scholar 

  5. Anupama K, Paramjit S, Jyot I (2010) J Reinf Plast Compos 29:1038

    Article  Google Scholar 

  6. Tsotra P, Friedrich K (2003) Compos A Appl Sci Manuf 34:75

    Article  Google Scholar 

  7. Tse KW, Moyer CA, Arajs S (1981) Mater Sci Eng 49:41

    Article  CAS  Google Scholar 

  8. Lei L, Yiping T, Haijun Z, Jianhua Z, Wenbin H (2008) J Mater Sci 43:974. doi:10.1007/s10853-007-2089-5

    Article  ADS  Google Scholar 

  9. Donnet JB, Bansal RC, Wang MJ (1990) Carbon fibers, 3rd edn. Dekker, New York

  10. Park SJ, Chou MS (2000) Carbon 38:1053

    Google Scholar 

  11. Chand S (2000) J Mater Sci 35:1303. doi:10.1023/A:1004780301489

    Google Scholar 

  12. Rozik NN, Asaad JN, Iskander BA, Abd-El-Messieh SL (2009) J Reinf Plast Compos 28:2817

    Article  CAS  Google Scholar 

  13. Teh PL, Mariatti M, Akil HM, Yeoh CK, Seetharamu KN, Wagiman AN, Beh KS (2007) Mater Lett 61:2156

    Article  CAS  Google Scholar 

  14. Ellis B (1993) Chemistry and technology of epoxy resins. Chapman and Hall, London

    Google Scholar 

  15. El-Tantawy F, Kamada K, Ohnabe H (2002) Mater Lett 57:242

    Article  CAS  Google Scholar 

  16. Achour ME, Brosseau C, Carmona F (2008) J Appl Phys 103:094103

    Google Scholar 

  17. Christopher J, Christopher V (2000) Compos Sci Technol 60:315

    Article  Google Scholar 

  18. Xiaojun W, Chung DD (1996) Smart Mater Struct 5:796

    Article  ADS  Google Scholar 

  19. Singh V, Kulkarni AR, Rama Mohan TR (2003) J Appl Polym Sci 90:3602

    Article  CAS  Google Scholar 

  20. Tsangaris GM, Psarras GC, Kontopoulos AJ (1991) J Non-Cryst Solids 1164:131

    Google Scholar 

  21. Elimat ZM, Zihlif AM, Ragosta G (2008) J Phys D Appl Phys 41:165408

    Article  ADS  Google Scholar 

  22. Soares BG, Leyva ME, Barra GM, Khastgir D (2006) Eur Polym J 42(3):676

    Article  CAS  Google Scholar 

  23. Abd-El-Messieh SL, Abd-El-Nour KN (2003) J Appl Polym Sci 88:1613

    Article  CAS  Google Scholar 

  24. Ying X, Yuezhen B, Chiang CK, Masaru M (2007) Carbon 45:1302

    Article  Google Scholar 

  25. Macedo PB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13(2):171

    CAS  Google Scholar 

  26. Tsangaris GM, Psarras GC, Kouloumbi N (1998) J Mater Sci 33(8):2027. doi:10.1023/A:1004398514901

    Article  CAS  ADS  Google Scholar 

  27. Ben AI, Rekik H, Kaddami H, Raihane M, Arous M, Kallel A (2009) J Electrostat 67:717

    Article  Google Scholar 

  28. Psarras GC, Manolkaki E, Tsangaris GM (2002) Compos A Appl Sci Manuf 33:375

    Article  Google Scholar 

  29. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London, UK

    Google Scholar 

  30. Prabakar K, Narayansass SK, Mangalaraj D (2002) Cryst Res Technol 37:1094

    Article  CAS  Google Scholar 

  31. Ayad A, Saq’an S, Ramadin Y, Zihlif A (2006) J Thermoplast Compos Mater 19:531

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the DFG (German Research Foundation) for financial support under Schu 926 18-1, and also thanks to the Institute of Polymers and Composites at Technische Universität Hamburg-Harburg, Germany, for cooperation and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Elimat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elimat, Z.M., Hamideen, M.S., Schulte, K.I. et al. Dielectric properties of epoxy/short carbon fiber composites. J Mater Sci 45, 5196–5203 (2010). https://doi.org/10.1007/s10853-010-4557-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4557-6

Keywords

Navigation