Skip to main content

Advertisement

Log in

Effects of transition metal oxide and Ni addition on the hydrogen-storage properties of Mg

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mg-based hydrogen-storage materials with the compositions of Mg–10 wt%oxide (oxide = Cr2O3, Fe2O3, MnO, and SiO2) and Mg–xFe2O3yNi were prepared by reactive mechanical grinding (RMG). Taking into consideration the hydriding and dehydriding rates and the cost of materials, Fe2O3 prepared by spray conversion is an appropriate oxide additive to Mg. Mg–5 wt%Fe2O3–15 wt%Ni exhibited the best hydrogen-storage performance among the Mg–xFe2O3yNi hydrogen materials. It stored 5.47 wt%H under 1.2 MPa H2 for 60 min and released 5.42 wt%H under 0.1 MPa H2 for 15 min at 593 K. The addition of Fe2O3 and Ni to Mg by the RMG shortens the diffusion distances through the reduction of the particle size of Mg. These additives are also considered to facilitate nucleation by creating many defects on the surface and in the interior of Mg. The added Fe2O3 and Ni themselves may also act as active sites for the nucleation. Ni forms the Mg2Ni phase by a reaction with Mg, and Fe appears from the reduction of Fe2O3 by hydrogen after hydriding–dehydriding cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Züttel A (2003) Mater Today 6(9):24

    Article  Google Scholar 

  2. Song MY (1995) J Mater Sci 30:1343. doi:10.1007/BF00356142

    Article  CAS  ADS  Google Scholar 

  3. Suryanarayana C (2001) Prog Mater Sci 46:1

    Article  CAS  Google Scholar 

  4. Oelerich W, Klassen T, Bormann R (2001) J Alloys Compd 322:L5

    Article  CAS  Google Scholar 

  5. Song MY, Bobet JL, Darriet B (2002) J Alloys Compd 340:256

    Article  CAS  Google Scholar 

  6. Dehouche Z, Klassen T, Oelerich W, Goyette J, Bose TK, Schulz R (2002) J Alloys Compd 347:3195

    Article  Google Scholar 

  7. Lee DS, Kwon IH, Bobet JL, Song MY (2004) J Alloys Compd 366:279

    Article  CAS  Google Scholar 

  8. Barkhordarian G, Klassen T, Bormann R (2003) Scripta Mater 49:213

    Article  CAS  Google Scholar 

  9. Barkhordarian G, Klassen T, Bormann R (2006) J Alloys Compd 407(1–2):249

    Article  CAS  Google Scholar 

  10. Friedrichs O, Klassen T, Sanchez-Lopez JC, Bormann R, Fernandez R (2006) Scripta Mater 54(7):1293

    Article  CAS  Google Scholar 

  11. Friedrichs O, Aguey-Zinsou F, Ares Fernandez JR, Sanchez-Lopez JC, Justo A, Klassen T, Bormann R, Fernández A (2006) Acta Mater 54(1):105

    Article  CAS  Google Scholar 

  12. Dolci F, Di Chio M, Baricco M, Giamello E (2007) J Mater Sci 42(17):7180. doi:10.1007/s10853-007-1567-0

    Article  CAS  ADS  Google Scholar 

  13. Aguey-Zinsou KF, Ares Fernandez JR, Klassen T, Bormann R (2006) Mater Res Bull 41(6):1118

    Article  CAS  Google Scholar 

  14. Yavari R, LeMoulec A, de Castro FR, Deledda S, Friedrichs O, Botta WJ, Vaughan G, Klassen T, Fernandez A, Kvick Å (2005) Scripta Mater 52(8):719

    Article  CAS  Google Scholar 

  15. Bogdanovic B, Spliethoff B (1987) Int J Hydrogen Energy 12(12):863

    Article  CAS  Google Scholar 

  16. Imamura H, Sakasai N, Kajii Y (1996) J Alloys Compd 232(1–2):218

    Article  CAS  Google Scholar 

  17. Song MY, Ivanov EI, Darriet B, Pezat M, Hagenmuller P (1987) J Less Common Met 131:71

    Article  CAS  Google Scholar 

  18. Bobet JL, Akiba E, Nakamura Y, Darriet B (2000) Int J Hydrogen Energy 25:987

    Article  CAS  Google Scholar 

  19. Song MY, Baek SH, Bobet JL, Kwon SN, Hong SH (2009) J Mater Sci 44(18):4827. doi:10.1007/s10853-009-3736-9

    Article  CAS  ADS  Google Scholar 

  20. Krozer A, Kasemo B (1989) J Phys Condens Matter 1(8):1533

    Article  CAS  ADS  Google Scholar 

  21. Huot J, Tremblay ML, Schulz R (2003) J Alloys Compd 356–357:603

    Article  Google Scholar 

  22. Imamura H, Kusuhara M, Minami S, Matsumoto M, Masanari K, Sakata Y, Itoh K, Fukunaga T (2003) Acta Mater 51(20):6407

    Article  CAS  Google Scholar 

  23. Berlouis LEA, Honnor P, Hall PJ, Morris S, Dodd SB (2006) J Mater Sci 41(19):6403. doi:10.1007/s10853-006-0732-1

    Article  CAS  ADS  Google Scholar 

  24. Grigorova E, Khristov M, Khrussanova M, Peshev P (2008) J Mater Sci 43(15):5336. doi:10.1007/s10853-008-2779-7

    Article  CAS  ADS  Google Scholar 

  25. Khrussanova M, Mandzhukova T, Grigorova E, Khristov M, Peshev P (2007) J Mater Sci 42(10):3338. doi:10.1007/s10853-006-0586-6

    Article  CAS  ADS  Google Scholar 

  26. Song MY, Hong SH, Kwon IH, Kwon SN, Park CG, Bae JS (2005) J Alloys Compd 398(1–2):283

    Article  CAS  Google Scholar 

  27. Song MY, Pezat M, Darriet B, Lee JY, Hagenmuller P (1986) J Mater Sci 21:346. doi:10.1007/BF01144743

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This research was performed for the Hydrogen Energy R&D Center, one of the 21st Century Frontier R&D Programs, funded by the Ministry of Science and Technology of Republic of Korea. This paper was also supported by the selection of research-oriented professor (MyoungYoup Song) of Chonbuk National University in 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung Youp Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, S.N., Mumm, D.R., Park, H.R. et al. Effects of transition metal oxide and Ni addition on the hydrogen-storage properties of Mg. J Mater Sci 45, 5164–5170 (2010). https://doi.org/10.1007/s10853-010-4551-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4551-z

Keywords

Navigation