Skip to main content
Log in

Strengthening mechanisms and optimization of structure and properties in a nanostructured IF steel

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanostructured interstitial free (IF) steel has been produced by accumulative roll-bonding (ARB) for 6 cycles, and post-process treatments by recovery annealing and cold rolling up to 50% thickness reductions have been employed to explore the optimization of structure and mechanical properties. Structural parameters including boundary spacing, misorientation angle, and dislocation density have been quantified by means of transmission electron microscopy and mechanical properties have been determined by tensile testing for the as-ARB processed samples and for the post-process treated samples. Annealing-induced hardening and low-strain cold rolling (<30%) induced softening have been observed, which is accounted for by the availability of mobile dislocations and dislocation sources in different sample conditions. Tailoring the structural scale and dislocation density by additional cold rolling has been verified to be a promising way for optimizing the mechanical properties of nanostructured IF steels produced by warm ARB. Based on the experimental findings, guidelines are discussed for optimizing structure and mechanical properties of samples deformed to very high strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hughes DA, Hansen N (2000) Acta Mater 48:2985–3004

    Article  CAS  Google Scholar 

  2. Liu Q, Huang X, Lloyd DJ, Hansen N (2002) Acta Mater 53:3789

    Article  Google Scholar 

  3. Mishin OV, Juul Jensen D, Hansen N (2003) Mater Sci Eng A 342:320

    Article  Google Scholar 

  4. Huang X, Hansen N, Tsuji N (2006) Science 312:249

    Article  CAS  ADS  PubMed  Google Scholar 

  5. Kamikawa N, Tsuji N, Huang N, Hansen N (2006) Acta Mater 54:3055

    Article  CAS  Google Scholar 

  6. Cabibbo M, Blum W, Evangelista E, Kassner ME, Meyers MA (2007) Metall Mater Trans A 39:181

    Article  Google Scholar 

  7. Zhang HW, Huang X, Hansen N (2008) Acta Mater 56:5451

    Article  CAS  Google Scholar 

  8. Wu XL, Ma E (2006) Appl Phys Lett 88:231911

    Article  ADS  Google Scholar 

  9. Zhao YH, Zhu YT, Liao XZ, Horita Z, Langdon TG (2006) Appl Phys Lett 89:121906

    Article  ADS  Google Scholar 

  10. Zhao YH, Bingert JF, Liao XZ, Cui BZ, Sergueeva AV, Mukherjee AK, Valiev RZ, Langdon TG, Zhu YT (2006) Adv Mater 18:2949

    Article  CAS  Google Scholar 

  11. Huang X (2007) J Mater Sci 42:1577. doi:10.1007/s10853-006-0988-5

    Article  CAS  ADS  Google Scholar 

  12. Zhao YH, Bingert JF, Zhu YT, Liao XZ, Valiev RZ, Horita Z, Langdon TG, Zhou YZ, Lavernia EJ (2008) Appl Phys Lett 92:081903

    Article  ADS  Google Scholar 

  13. Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Scr Mater 47:893

    Article  CAS  Google Scholar 

  14. Zhu YT, Huang JY, Ungar T, Wang YM, Ma E, Valiev RZ (2003) J Mater Res 18:1908

    Article  CAS  ADS  Google Scholar 

  15. Meyers MA, Mishra A, Benson DJ (2006) Prog Mater Sci 51:427

    Article  CAS  Google Scholar 

  16. Koch C, Ovid’ko I, Seal S, Veprek S (2007) Structural nanocrystalline materials—fundamentals and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  17. Hansen N (2004) Scr Mater 51:801

    Article  CAS  Google Scholar 

  18. Hansen N (2005) Adv Eng Mater 7:815

    Article  CAS  Google Scholar 

  19. Kamikawa N, Huang X, Tsuji N, Hansen N (2009) Acta Mater 57:4198

    Article  CAS  Google Scholar 

  20. Huang X, Kamikawa N, Hansen N (2008) Mater Sci Eng A 493:184

    Article  Google Scholar 

  21. Winther G, Huang X, Godfrey A, Hansen N (2004) Acta Mater 51:4437

    Article  Google Scholar 

  22. Liu Q (1995) Ultramicroscopy 60:81

    Article  CAS  Google Scholar 

  23. Bowen JR, Prangnell PB, Juul Jensen D, Hansen N (2004) Mater Sci Eng A 387389:235

    Google Scholar 

  24. Yu CY, Kao PW, Chang CP (2005) Acta Mater 53:4019

    Article  CAS  Google Scholar 

  25. Huang X (2009) Scr Mater 50:1078

    Article  Google Scholar 

  26. Huang X, Kamikawa N, Hansen N (2008) J Mater Sci 43:7397. doi:10.1007/s10853-008-2873-x

    Article  CAS  ADS  Google Scholar 

  27. Huang X, Kamikawa N, Hansen N (2008) Mater Sci Eng 483–484:102

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Danish National Research Foundation for supporting the Danish-Chinese Center for Nanometals, within which this work was performed. We also thank Prof. B. Ralph for his careful reading of the manuscript and suggestions for language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Kamikawa, N. & Hansen, N. Strengthening mechanisms and optimization of structure and properties in a nanostructured IF steel. J Mater Sci 45, 4761–4769 (2010). https://doi.org/10.1007/s10853-010-4521-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4521-5

Keywords

Navigation