Advertisement

Journal of Materials Science

, Volume 45, Issue 15, pp 4196–4205 | Cite as

Effects of fiber blending and diamines on wheat gluten materials reinforced with hemp fiber

  • C. Wretfors
  • S.-W. Cho
  • R. Kuktaite
  • M. S. Hedenqvist
  • S. Marttila
  • S. Nimmermark
  • E. Johansson
Article

Abstract

Wheat gluten (WG) is a promising base material for production of “green” plastics, although reinforcement is needed in more demanding applications. Hemp fiber is a promising reinforcement source but difficulties exist in obtaining desired properties with a WG-based matrix. This study aimed at improving fiber dispersion and fiber–matrix interactions using a high speed blender and a diamine as a cross-linker. Samples were manufactured using compression molding, two types of blenders and addition of diamine. Mechanical properties were assessed with tensile testing. Tensile-fractured surfaces were examined with scanning electron microscopy (SEM). Protein polymerization and fiber–protein matrix interactions were examined using high performance liquid chromatography (HPLC) and confocal laser scanning microscopy (CLSM). The results showed that a higher-speed grinding yielded a more even distribution of fibers and a more polymerized protein structure compared to a lower-speed grinding. However, these improvements did not result in increased strength, stiffness, and extensibility for the higher-speed grinding. The strength was increased when the grinding was combined with addition of a diamine (Jeffamine® EDR-176). HPLC, SEM, and CLSM, indicated that diamine added samples showed a more “plastic” appearance together with a stiffer and stronger structure with less cracking compared to samples without diamine. The use of the diamine also led to an increased polymerization of the proteins, although no effect on the fiber–protein matrix interactions was observed using microscopical techniques. Thus, for future successful use of hemp fibers to reinforce gluten materials, an appropriate method to increase the fiber–protein matrix interaction is needed.

Keywords

High Performance Liquid Chromatography Hemp Fiber Quality Wheat Gluten Hemp Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was financed by Formas, Sweden. The authors thank Maria Luisa Prieto-Linde for practical help in the laboratory and Kerstin Brismar for her assistance with SEM.

References

  1. 1.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) Science 311:484CrossRefPubMedADSGoogle Scholar
  2. 2.
    Cuq B, Gontard N, Guilbert S (1998) Cereal Chem 75:1CrossRefGoogle Scholar
  3. 3.
    Gennadios A (2002) Protein-based films and coating. CRC Press LLC, Boca Raton, FlCrossRefGoogle Scholar
  4. 4.
    Olabarrieta I, Cho S-W, Gällstedt M, Sarasua JR, Johansson E, Hedenqvist MS (2006) Biomacromol 7:1657CrossRefGoogle Scholar
  5. 5.
    Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 10:19CrossRefGoogle Scholar
  6. 6.
    Kohler R, Wedler M (1994) In: Vortrags-nr 331. Proceedings of the Techtextil-symposium, 15–17 June, Frankfurt, GermanyGoogle Scholar
  7. 7.
    Liu W, Misra M, Askeland P, Drzal LT, Mohanty AK (2005) Polymer 46:2710CrossRefGoogle Scholar
  8. 8.
    Mohanty AK, Misra M, Drzal LT (2005) J Polym Environ 13:279CrossRefGoogle Scholar
  9. 9.
    Song YH, Zheng Q, Zhou WC (2009) Sci China B Chem 52:257CrossRefGoogle Scholar
  10. 10.
    Song YH, Zheng Q, Liu C (2008) Chem Res Chin Univ 24:644CrossRefGoogle Scholar
  11. 11.
    Song YH, Zheng Q (2009) Ind Crops Prod 29:446CrossRefGoogle Scholar
  12. 12.
    Kunanopparat T, Menut P, Morel M-H, Guilbert S (2008) Compos A Appl Sci Manuf 39:777CrossRefGoogle Scholar
  13. 13.
    Kunanopparat T, Menut P, Morel M-H, Guilbert S (2008) Compos A Appl Sci Manuf 39:1787CrossRefGoogle Scholar
  14. 14.
    Wretfors C, Cho S-W, Hedenqvist MS, Marttila S, Nimmermark S, Johansson E (2009) J Polym Environ 17:259CrossRefGoogle Scholar
  15. 15.
    Liu W, Mohanty AK, Askeland P, Drzal LT, Misra M (2004) Polymer 45:7589CrossRefGoogle Scholar
  16. 16.
    Wang B, Sain M, Oksman K (2007) Appl Compos Mater 14:89CrossRefADSGoogle Scholar
  17. 17.
    Gällstedt M, Matozzi A, Johansson E, Hedenqvist MS (2004) Biomacromolecules 5:2020CrossRefPubMedGoogle Scholar
  18. 18.
    Svennerstedt B (2009) J Nat Fibers 6:295CrossRefGoogle Scholar
  19. 19.
    Johansson E, Prieto-Linde M-L, Jönsson J (2001) Cereal Chem 78:19CrossRefGoogle Scholar
  20. 20.
    Ullsten NH, Cho S-W, Spencer G, Gällstedt M, Johansson E, Hedenqvist MS (2009) Biomacromolecules 10:479CrossRefGoogle Scholar
  21. 21.
    Kessler RW, Kohler R, Tubach M (1999) In: Proceedings of the international conference on natural fibers performance, 26–28 May, Copenhagen, DenmarkGoogle Scholar
  22. 22.
    Lillholt H (2002) In: Proceedings of the 23rd Risö international symposium on materials science, 2–5 September, Roskilde, DenmarkGoogle Scholar
  23. 23.
    Kohler R, Kessler RW (1994) In: Proceedings of the 5th International conference on woodfiber–plastic composites, 25–26 May, Madison, USAGoogle Scholar
  24. 24.
    Dalmay P, Smith A, Chotard T, Sahay-Turner P, Gloaguen V, Krausz P (2010) J Mater Sci 45:793. doi: 10.1007/s10853-009-4002-x CrossRefADSGoogle Scholar
  25. 25.
    Ullsten NH, Gällstedt M, Johansson E, Gräslund A, Hedenqvist MS (2006) Biomacromolecules 7:771CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • C. Wretfors
    • 1
  • S.-W. Cho
    • 2
  • R. Kuktaite
    • 1
  • M. S. Hedenqvist
    • 2
  • S. Marttila
    • 1
  • S. Nimmermark
    • 1
  • E. Johansson
    • 1
  1. 1.Department of Agriculture—Farming Systems, Technology and Product Quality, Faculty of Landscape Planning, Horticulture and Agricultural SciencesSwedish University of Agricultural Sciences (SLU)AlnarpSweden
  2. 2.Fibre and Polymer TechnologyRoyal Institute of TechnologyStockholmSweden

Personalised recommendations