Skip to main content
Log in

Surface tension of liquid Al–Cu–Ag ternary alloys

  • Interface Science
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Surface tension data of liquid Al–Cu–Ag ternary alloys have been measured contactlessly using the technique of electromagnetic levitation. A digital CMOS-camera (400 fps) recorded image sequences of the oscillating liquid sample and the surface tension was determined from an analysis of the frequency spectra. Data were obtained at temperatures above the melting point. Samples covered a broad range of compositions. In all cases, the surface tensions could be described as linear functions of temperature with a negative slope. The data were compared to thermodynamic model calculations using the ideal- and subregular solution approximation. It was found that, apart from samples where the composition is close to one of the binary margin phases, the surface tensions of the ternary alloys can be described by the ideal solution model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cooksey DJS, Hellawell A (1967) J. Inst Met 95:183

    Google Scholar 

  2. De Wilde J, Froyen L, Rex S (2004) Scripta Mater 51:533

    Article  Google Scholar 

  3. Gupta P, Doraiswami R, Tumala R (2004) Electron Compon Technol 1:68

    Google Scholar 

  4. Genau A, Ratke L (2010) Int J Mater Res (submitted)

  5. Brillo J, Brooks R, Egry I, Quested P (2008) High Temp High Press 37:371

    Google Scholar 

  6. Brillo J, Egry I, Westphal J (2008) Int J Mater Res 99:2

    Google Scholar 

  7. Schmitz J, Brillo J, Egry I, Schmid-Fetzer R (2009) Int J Mater Res 100:11

    Google Scholar 

  8. Hibiya T, Morohoshi K, Ozawa S (2010) J Mater Sci 45:1986. doi:10.1007/s10853-009-4107-2

    Article  ADS  Google Scholar 

  9. Egry I, Sauerland S (1994) High Temp High Press 26:217

    Google Scholar 

  10. Butler J (1935) Proc Roy Soc A 135:348

    ADS  Google Scholar 

  11. Brillo J, Chatain D, Egry I (2009) Int J Mater Res 100:1

    Google Scholar 

  12. Brillo J, Egry I, Matsushita T (2006) Z Metallkd 97:1

    Google Scholar 

  13. Kaptay G (2002) Proceedings of microcad, section: materials science, University of Miskolc, vol 45

  14. Tanaka T, Iida T (1994) Steel Res 65:21

    Google Scholar 

  15. Schenk T, Holland-Moritz D, Simonet R, Bellissent R, Herlach DM (2002) Phys Rev Lett 89:075507

    Article  PubMed  ADS  Google Scholar 

  16. Schenk T, Simonet V, Holland-Moritz D, Bellisent R, Hansen T, Convert P (2004) Europhys Lett 65:34

    Article  ADS  Google Scholar 

  17. Das SK, Horbach J, Voigtmann T (2008) Phys. Rev. B78:064208

    ADS  Google Scholar 

  18. Hoar TP, Melford DA (1957) Trans Farad Soc 33:315

    Article  Google Scholar 

  19. Akinlade O, Sommer F (2001) J Alloys Compd 316:226

    Article  Google Scholar 

  20. Tanaka T, Hack K, Iida T, Hara S (1996) Z Metallkd 87:380

    Google Scholar 

  21. Lüdecke C, Lüdecke D (2000) Thermodynamik. Springer, Heidelberg

    Google Scholar 

  22. Redlich O, Kister AT (1948) Ind Eng Chem 40:345

    Article  Google Scholar 

  23. Schmid-Fetzer RS, Gröbner J (2001) Adv Eng Mater 3:947

    Article  Google Scholar 

  24. Servant C, Sundman B, Lyon O (2001) Calphad 25:79

    Article  Google Scholar 

  25. Brillo J, Egry I (2007) Int J Thermophys 28:1004

    Article  Google Scholar 

  26. Nowak R, Lanata T, Sobczak N, Ricci E, Giuranno D, Novakovic R, Holland-Moritz D, Egry I (2010) J Mater Sci 45:1993. doi:10.1007/s10853-009-4061-z

  27. Herlach DM, Cochrane RF, Egry I, Fecht HJ, Greer AL (1993) Int J Mater Rev 38:273

    Google Scholar 

  28. Paradis PF, Ishikawa T, Koike N (2006) J Appl Phys 100:103523

    Article  ADS  Google Scholar 

  29. Krishnan S, Hansen GP, Hauge RH, Margrave JL (1990) High Temp Sci 29:17

    Google Scholar 

  30. Brillo J, Egry I, Ho I (2006) Int J Thermophys 27:494

    Article  Google Scholar 

  31. Brillo J, Lohöfer G, Schmid-Hohagen F, Schneider S, Egry I (2006) J Mater Prod Technol 16:247

    Google Scholar 

  32. Cummings DL, Blackburn DA (1991) J Fluid Mech 224:395

    Article  MATH  ADS  Google Scholar 

  33. Witusiewicz VT, Hecht U, Fries SG, Rex S (2004) J Alloys Compd 385:133

    Google Scholar 

  34. Witusiewicz VT, Hecht U, Fries SG, Rex S (2004) J Alloys Compd 387:217

    Article  Google Scholar 

  35. Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing Ltd, Cambridge

    Google Scholar 

  36. Mills KC, Su YC (2006) Int Mat Rev 51:329

    Article  Google Scholar 

  37. Keene B (1993) Int Mater Rev 38:157

    Google Scholar 

  38. Lee J, Shimoda W, Tanaka T (2004) Mater Trans 45:2864

    Article  Google Scholar 

Download references

Acknowledgements

The support by the “Deutsche Forschungsgemeinschaft” (Grants Eg 93/4 and 436UKR17) is gratefully acknowledged. We also wish to thank R. Schmid-Fetzer for calculating the liquidus temperatures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brillo, J., Plevachuk, Y. & Egry, I. Surface tension of liquid Al–Cu–Ag ternary alloys. J Mater Sci 45, 5150–5157 (2010). https://doi.org/10.1007/s10853-010-4512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4512-6

Keywords

Navigation