Abstract
A novel biosensor for hydrogen peroxide was developed by combining the known properties of microperoxidase-11 (MP11) as an oxidation catalyst, and the interesting properties of diphenylalanine peptide nanotubes (PNTs) as a supporting matrix to allow a good bioelectrochemical interface. In this case, the synthesized MP11/PNTs were immobilized onto the ITO electrode surface via layer-by-layer (LBL) deposition, using poly(allylamine hydrochloride) (PAH) as positively charged polyelectrolyte layers. The PNTs provide a favorable microenvironment for MP11 to perform direct electron transfer to the electrode surface. The resulting electrodes showed a pair of well-defined redox peaks with formal potential at about −343 mV (versus SCE) in phosphate buffer solution (pH 7). The experimental results also demonstrated that the resulting biosensor exhibited good electrocatalytic activity to the reduction of H2O2 with a sensitivity of 9.43 μA cm−2 mmol−1 L, and a detection limit of 6 μmol L−1 at the signal-to-noise ratio of 3. Moreover, we also observed that the peptides self-assembly can be influenced upon changing the pH of the solution. Alkaline solution appears to favor the packing of diphenylalanine nanotubes being closer than acidic or neutral conditions. The study proved that the combination of PNTs with MP11 is able to open new opportunities for the design of enzymatic biosensors with potential applications in practice.
This is a preview of subscription content,
to check access.






Similar content being viewed by others

References
Zhang S (2003) Nat Biotechnol 21:1171
Sarikaya M (1999) Proc Natl Acad Sci USA 96:14183
Seeman NC, Belcher AM (2002) PNAS 99:6451
Kohli P, Martin CR (2005) Curr Pharm Biotechnol 6:35
Scanlon S, Aggeli A (2008) Nano Today 3:22
Gao X, Matsui H (2005) Adv Mater 17:2037
Reches M, Gazit E (2006) Phys Biol 3:S10
Reches M, Gazit E (2003) Science 300:625
Adler-Abramovich L, Reches M, Sedman VL, Allen S, Tendler SJB, Gazit E (2006) Langmuir 22:1313
de Groot NS, Parella T, Aviles FX, Vendrell J, Ventura S (2007) Biophys J 92:1732
Sopher NB, Abrams ZR, Reches M, Gazit E, Hanein Y (2007) J Micromech Microeng 17:2360
Yemini M, Reches M, Gazit E, Rishpon J (2005) Anal Chem 77:5155
Gorbitz CH (2006) Chem Commun 2332
Han TH, Park JS, Oh JK, Kim SO (2008) J Nanosci Nanotechnol 8:5547
Alves WA, Fiorito PA, Froyer G, Haber FE, Vellutini L, Torresi RM, Cordoba de Torresi SI (2008) J Nanosci Nanotechnol 8:3570
Katz E, Sheeney-Haj-Ichia L (2006) Angew Chem Int Ed 43:3292
Nicolis S, Casella L, Roncone R, Dallacosta C, Monzani E (2007) C R Chimie 10:1
Dallacosta C, Alves WA, Ferreira AMDC, Monzani E, Casella L (2007) J Chem Soc Dalton Trans 21:2197
Lotzbeyer T, Schuhmann W, Katz E, Falter J, Schmidt H-L (1994) J Electroanal Chem 377:291
Merrifield RB (1963) J Am Chem Soc 85:2149
Matsueda GR, Stewart JM (1981) Peptides 2:45
Kaiser E, Bossinger CD, Colescott RL, Olsen DB (1980) Anal Chim Acta 118:149
Oliveira VX, Fazio MA, Santos EL, Pesquero JB, Miranda A (2008) J Pept Sci 14:617
Yan X, Cui Y, He Q, Wang K, Li J (2008) Chem Mater 20:1522
Matsui H, Gologan B (2000) J Phys Chem B 104:3383
Gorbitz CH (2001) Chem Eur J 7:5153
Castelletto V, Hamley IW, Harris PJF, Olsson U, Spencer N (2009) J Phys Chem B 113:9978
Surewicz WK, Mantsch HH, Chapman D (1993) Biochemistry 32:389
Nagai Y, Nakanishi T, Okamoto H, Takeda K, Furukawa Y, Usui K, Mihara H (2005) Jpn J Appl Phys 44:7654
Douberly GE Jr, Pan S, Walters D, Matsui H (2001) J Phys Chem B 105:7612
Matsui H, Pan S, Douberly GE Jr (2001) J Phys Chem B 105:1683
Dorr S, Schade U, Hellwig P (2008) Vib Spectrosc 47:59
Matsui H, MacCuspie R (2001) Nano Lett 1:671
George P, Hanania G (1952) Biochem J 52:517
Donoghue DO, Magner E (2007) Electrochim Acta 53:1134
Jiang H-J, Zhao Y, Yang H, Akins DL (2009) Mater Chem Phys 114:879
Liu Y, Wang M, Zhao F, Guo Z, Chen H, Dong S (2005) J Electroanal Chem 581:1
Munteanu FD, Lindgren A, Emnéus J, Gorton L, Ruzgas T, Csoregi E, Ciuru A, van Huystee RB, Gazaryan IG, Lagrimini LM (1998) Anal Chem 70:2596
Wan J, Bi J, Du P, Zhang S (2009) Anal Biochem 386:256
Razumas V, Kazlauskaite J, Vidziunaite R (1996) Bioelectrochem Bioenerg 39:139
Ren C, Song Y, Li Z, Zhu G (2005) Anal Bioanal Chem 381:1179
Huang W, Jia J, Zhang Z, Han X, Tang J, Wang J, Dong S, Wang E (2003) Biosens Bioelectron 18:1225
Korri-Youssoufi H, Desbenoit N, Ricoux R, Mahy J-P, Lecomte S (2008) Mater Sci Eng C 28:855
Wang M, Zhao F, Liu Y, Dong S (2005) Biosens Bioelectron 21:159
Xiang C, Zou Y, Sun L-X, Xu F (2007) Talanta 74:206
Acknowledgements
Financial support by the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant No. 08/51074-6, 08/53576-9, 05/53241-9 and 08/55549-9) is gratefully acknowledged. This work was also supported by INCT in Bioanalytics (FAPESP, Grant No. 08/57805-2 and CNPq, Grant No. 573672/2008-3). We are also thankful to LME–LNLS (Project SEM–LV 9004 and SEM–FEG 8511).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cipriano, T.C., Takahashi, P.M., de Lima, D. et al. Spatial organization of peptide nanotubes for electrochemical devices. J Mater Sci 45, 5101–5108 (2010). https://doi.org/10.1007/s10853-010-4478-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-010-4478-4