Skip to main content

Regression analysis of manufacturing electrospun nonwoven nanotextiles

Abstract

Electrospinning is a simple and relatively inexpensive method of producing nanofibres by solidification of a polymer solution, stretched by an electric field. In the present work, the results of a systematic investigation of the effects of varying manufacturing parameters on the electrospinning of nanotextiles are reported. The physical and mathematical descriptions of the electrospinning process still remain challenging despite several reported parametric studies performed under various experimental configurations. Since the quality of the nanofibres produced using electrospinning is defined by their fineness and variations of diameter, the relationship between fibre diameter and production parameters has been studied here using multiple regression analysis (MRA) to facilitate quality control of the produced nanofibres. The governing parameters investigated are the concentration and feed rate of polymer solution, applied voltage and the relative humidity of the enclosed area. The results show that polymer concentration and feed rate have significant and controlled impacts on producing fibres with diameters in the nano-range. Voltage and humidity also have considerable effects although their contributions to fibre stretching cannot be well-controlled. It is evident that the relationship derived from the two major factors, polymer concentration and feed rate, can predict the produced fibre diameter more accurately compared to that derived from all factors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) Comput Sci Technol 63:2223

    Article  CAS  Google Scholar 

  2. Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S (2004) J Nanosci Nanotechnol 4:52

    CAS  PubMed  Google Scholar 

  3. Greiner A, Wendorff JH (2007) Angew Chem Int Ed Rev 46:5670

    Article  CAS  Google Scholar 

  4. Stegmaier T, Dauner M, Von Arnim V, Scherrieble A, Dinkelmann A, Planck H (2007) In: Brown PJ, Stevens K (eds) Nanofibres and nanotechnology in textiles. Woodhead publishing limited, Cambridge

    Google Scholar 

  5. Ko FK (2007) In: Brown PJ, Stevens K (eds) Nanofibres and nanotechnology in textiles. Woodhead publishing limited, Cambridge

    Google Scholar 

  6. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) J Biomed Mater Res 60:613

    Article  CAS  PubMed  Google Scholar 

  7. Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Polymer 40:7397

    Article  CAS  Google Scholar 

  8. Patra SN, Bhattacharyya D, Ray S, Easteal AJ (2009) IOP Conf Series Mater Sci Eng. doi:10.1088/1757-899X/4/1/012020

  9. Kataphinan W, Dabney S, Smith D, Reneker DH (2001) J Textile Apparel Technol Manag 1 (Special issue: The Fiber Society Spring Conference, Raleigh, NC)

  10. Kataphinan W, Dabney S, Reneker DH, Smith D (2001) Patent right WO0126610, University of Akron

  11. Laurencin CT, Ambrosio AMA, Borden MD, Cooper JA Jr (1999) Annu Rev Biomed Eng 1:19

    Article  CAS  PubMed  Google Scholar 

  12. Frenot A, Chronakis IS (2003) Curr Opin Colloid Interface Sci 8:64

    Article  CAS  Google Scholar 

  13. Patra SN, Easteal AJ, Bhattacharyya D (2009) J Mater Sci 44:647. doi:10.1007/s10853-008-3050-y

    Article  CAS  ADS  Google Scholar 

  14. Lin T, Wang XG (2007) In: Brown PJ, Stevens K (eds) Nanofibres and nanotechnology in textiles. Woodhead publishing limited, Cambridge

    Google Scholar 

  15. Inai R, Kotaki M, Ramakrishna S (2005) Nanotechnology 16:208

    Article  CAS  Google Scholar 

  16. He J-H, Liu Y, Mo L-F, Wan Y-Q, Xu L (2008) Electrospun nanofibres and their applications. iSmithers, Shawbury, UK

    Google Scholar 

  17. Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Polymer 48:6913

    Article  CAS  Google Scholar 

  18. Tan SH, Inai R, Kotaki M, Ramakrishna S (2005) Polymer 46:6128

    Article  CAS  Google Scholar 

  19. Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) Introduction to electrospinning and nanofibers. World Scientific Publishing, Singapore

    Book  Google Scholar 

  20. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Polymer 43:4403

    Article  CAS  Google Scholar 

  21. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) Polymer 42:261

    Article  CAS  Google Scholar 

  22. De Vrieze S, Van Camp T, Nelvig A, Hagström B, Westbroek P, De Clerck K (2009) J Mater Sci 44:1357. doi:10.1007/s10853-008-3010-6

    Article  ADS  Google Scholar 

  23. Park SH (1996) Robust design and analysis for quality engineering. Chapman & Hall, London, UK

    Google Scholar 

  24. Lochner RH, Matar JE (1990) Designing for quality: an introduction to the best of Taguchi and western methods of statistical experimental design. Quality Resources, New York

    Google Scholar 

  25. Chatterjee S, Price B (1991) Regression analysis by example. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of the Foundation for Research, Science and Technology New Zealand (UOAX 0405). They would also like to acknowledge the experimental help received from Messrs Jos Geurts, Callum Turnbull, Stephen Cawley and Ms Catherine Hobbis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bhattacharyya.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Patra, S.N., Lin, R.J.T. & Bhattacharyya, D. Regression analysis of manufacturing electrospun nonwoven nanotextiles. J Mater Sci 45, 3938–3946 (2010). https://doi.org/10.1007/s10853-010-4459-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4459-7

Keywords

  • Feed Rate
  • Polymer Solution
  • PLLA
  • Polymer Concentration
  • Fibre Diameter