Skip to main content
Log in

Effect of ultrasound radiation on the size and size distribution of synthesized copper particles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of ultrasound radiation on the size and size distribution of synthesized copper particles was investigated under various concentrations of ethylene glycol (E.G.) as a capping agent. Monodispersed copper particles were produced by the reduction of an aqueous copper (II) sulfate solution at the presence of hydrazine monohydrate. X-ray diffraction and scanning electron microscopy analysis revealed that the morphology, size, and size distribution of produced particles were influenced by the reducing agent injection rate, capping agent concentration, and sonication. Increasing the injection rate of reducing agent to an amount higher than a critical value decreases the size of copper particles and also converts the monodispersed particles to polydispersed particles. Results of using a sonifier at the reduction stage revealed that finer monodispersed copper particles can be achieved at higher injection rates related to the critical value. Increasing the concentration of E.G. as a capping agent decreases the size of copper particles, while applying ultrasound radiation along with increasing the concentration of E.G. increases the size of copper particles. Morphology of particles varies by the concentration and type of the capping agent. Higher reducing agent injection rates and the application of a sonifier at the instance of reduction result in smaller spherical particles at various capping agent concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gates BC (1995) Chem Rev 95:511

    Article  CAS  Google Scholar 

  2. Schmid G (1992) Chem Rev 92:1709

    Article  CAS  Google Scholar 

  3. Kamat PV (1993) Chem Rev 93:267

    Article  CAS  Google Scholar 

  4. Alivisatos AP (1996) J Phys Chem 100:13226

    Article  CAS  Google Scholar 

  5. Beecraft LL, Ober CK (1997) Chem Mater 9:1302

    Article  Google Scholar 

  6. Lisiecki I, Pileni MP (1993) J Am Chem Soc 115:3887

    Article  CAS  Google Scholar 

  7. Pileni MP, Nilham BW, Gulik-Krzywicki T, Tanori J, Lisiecki I, Filankembo A (1999) Adv Mater 11:1358

    Article  CAS  Google Scholar 

  8. Qi L, Ma J, Shen J (1997) J Colloid Interface Sci 186:498

    Article  CAS  PubMed  Google Scholar 

  9. Yeh MS, Yang YS, Lee YP, Lee HF, Yeh YH, Yeh CS (1999) J Phys Chem B 103:6851

    Article  CAS  Google Scholar 

  10. Casella IG, Cataldi TRI, Guerrieri A, Desimoni E (1996) Anal Chim Acta 335:217

    Article  CAS  Google Scholar 

  11. Huang HH, Yan FQ, Kek YM, Chew CH, Xu GQ, Ji W, Oh PS, Tang SH (1997) Langmuir 13:172

    Article  CAS  Google Scholar 

  12. Vitulli G, Bernini M, Bertozzi S, Pitzalis E, Salvadori P, Coluccia S, Martra G (2002) Chem Mater 14:1183

    Article  CAS  Google Scholar 

  13. Liu Z, Bando Y (2003) Adv Mater 15:303

    Article  CAS  Google Scholar 

  14. Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS (2007) J Colloid Interface Sci 311:417

    Article  CAS  PubMed  Google Scholar 

  15. Song X, Sun S, Zhang W, Yin Z (2004) J Colloid Interface Sci 273:463

    Article  CAS  PubMed  Google Scholar 

  16. Liu W, Wang X, Fu S (2006) US Patent 0053927

  17. Lisiecki I, Billoudet F, Pileni MP (1996) J Phys Chem 100:4160

    Article  CAS  Google Scholar 

  18. Wu SH, Chen DH (2004) J Colloid Interface Sci 273:165

    Article  CAS  PubMed  Google Scholar 

  19. Shi Y, Li H, Chen L, Huang X (2005) Sci Technol Adv Mater 6:761

    Article  CAS  Google Scholar 

  20. Chang Y, Lye ML, Zeng HC (2005) Langmuir 21:3746

    Article  CAS  PubMed  Google Scholar 

  21. Kumar RV, Mastai Y, Diamant Y, Gedanken A (2001) J Mater Chem 11:1209

    Article  CAS  Google Scholar 

  22. Dhas NA, Raj CP, Gedanken A (1998) Chem Mater 10:1446

    Article  CAS  Google Scholar 

  23. LaMar VK, Dinegar RH (1950) J Am Chem Soc 72:4847

    Article  Google Scholar 

  24. Kim JS, Moon JH, Jeong SH, Kim DJ, Park BK (2007) US Patent 0180954

  25. Miki H (1998) US Patent 5741347

  26. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraj Hadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghimi-Rad, J., Zabihi, F., Hadi, I. et al. Effect of ultrasound radiation on the size and size distribution of synthesized copper particles. J Mater Sci 45, 3804–3811 (2010). https://doi.org/10.1007/s10853-010-4435-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4435-2

Keywords

Navigation