Skip to main content

Advertisement

Log in

Ultrahigh strength of nanocrystalline iron-based alloys produced by high-pressure torsion

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microstructural evolution of an Fe–18.1%Ni–34.9%Co–9.3%Ti (in at.%) in processing by high-pressure torsion (HPT) was investigated by electron backscatter diffraction. After 10 turns of HPT straining at room temperature with a rotation speed of 1 rpm under a pressure of 6 GPa, the alloy was composed of body-centered cubic-structured grains with sizes of 20–50 nm having high density crystal defects inside the grains. The mechanism of this significant grain refinement was discussed in relation to the stress-induced martensitic transformation and transgranular shear near ideal strength. The actual shear stress of the nanocrystalline iron-based alloy was estimated to be 1.37 GPa and as high as 38% of the ideal shear stress, which is similar to Gum Metal exhibiting deformation without dislocation activity. It is inferred from these results that the dislocation motion can be suppressed up to ultrahigh stress level near ideal strength by the formation of nano-sized grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Valiev RZ (2004) Nature Mater 3:511

    Article  CAS  ADS  Google Scholar 

  2. Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Russ Metall 1:99

    Google Scholar 

  3. Saito Y, Tsuji N, Utsunomiya H, Sakaki T, Hong RG (1998) Scr Mater 39:1221

    Article  CAS  Google Scholar 

  4. Bridgman PW (1935) Phys Rev 48:825

    Article  CAS  ADS  Google Scholar 

  5. Kuramoto S, Furuta T, Nagasako N, Horita Z (2009) Appl Phys Lett 211901 1–211901 3

    Google Scholar 

  6. Taylor GI (1934) Proc R Soc A 145:362

    Article  CAS  ADS  Google Scholar 

  7. Orowan E (1934) Zeit Phys 89:605

    Article  ADS  Google Scholar 

  8. Polanyi M (1934) Zeit Phys 89:660

    Article  CAS  ADS  Google Scholar 

  9. Whang Y, Chen M, Zhou F, Ma E (2002) Nature 419:912

    Article  ADS  Google Scholar 

  10. Saito T, Furuta T, Hwang JH, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakuma T (2003) Science 300:464

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Mater Sci Eng A 387–389:809

    Google Scholar 

  12. Esrtrin Y, Molitnikov A, Davies CHJ, Lapovok R (2008) J Mech Phys Solids 56:1186

    Article  ADS  Google Scholar 

  13. Furuta T, Kuramoto S, Ohsuna T, Horita Z (2010) In: Proceedings of the 2nd international symposium on steel science (ISSS 2009), 21–24 October 2009, The Iron and Steel Institute of Japan, ISSS, Kyoto, Japan (in press)

  14. Morito S, Tanaka H, Konishi R, Furuhara T, Maki T (2003) Acta Mater 51:1789

    Article  CAS  Google Scholar 

  15. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  16. Tsuji N, Maki T (2009) Scr Mater 60:1044

    Article  CAS  Google Scholar 

  17. Zhao YH, Liao XZ, Horita Z, Langdon TG, Zhu YT (2008) Mater Sci Eng A493:123

    CAS  Google Scholar 

  18. Furuta T, Hara M, Horita Z, Kuramoto S (2009) Int J Mater Res 100:1211

    Google Scholar 

  19. Ivanisenko Yu, MacLaren I, Sauvage X, Valiev RZ, Frecht HJ (2006) Acta Mater 54:1659

    Article  CAS  Google Scholar 

  20. Li JG, Umemoto M, Todaka Y, Fujisaku K, Tuchiya K (2008) Rev Adv Mater Sci 18:577

    CAS  Google Scholar 

  21. Takaki S, Kawasaki K, Kimura Y (2001) J Mater Process Technol 1:359

    Article  Google Scholar 

  22. Krenn C, Roundy D, Morris JW, Cohen M (2001) Mater Sci Eng A319–321:111

    Google Scholar 

  23. Landolt-Börnstein 29 29-30 Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest

  24. Hara M, Furuta T, Kuramoto S, Shimizu Y, Yano T, Takesue N (2009) Int J Mater Res 100:345

    CAS  Google Scholar 

  25. Kuramoto S, Furuta T, Nagasako N, Hara M (2010) Mater Sci Forum 638–642:3858

    Article  Google Scholar 

  26. Withey E, Ye J, Minor A, Kuramoto S, Chrzan DC, Morris JW (2009) Exp Mech 50:37

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the assistance of Akira Yamada and Nobuaki Suzuki at Toyota Central R&D Labs., Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadahiko Furuta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuta, T., Kuramoto, S., Horibuchi, K. et al. Ultrahigh strength of nanocrystalline iron-based alloys produced by high-pressure torsion. J Mater Sci 45, 4745–4753 (2010). https://doi.org/10.1007/s10853-010-4426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4426-3

Keywords

Navigation