Skip to main content
Log in

Organoclay/thermotropic liquid crystalline polymer nanocomposites. Part IV: organoclay of comparable size to fully extended TLCP molecules

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Organoclay with a size of 100–200 nm was successfully prepared by a combination of wet ball milling and ultrasonication methods without changing its physico-chemical properties. A nanocomposite (TC3 FS) of 3.0 wt% treated organoclay in thermotropic liquid crystalline polymer (TLCP) was prepared. The treated organoclay was of comparable size to the fully extended TLCP molecules and it formed weak interactions with them. The liquid crystallinity of the TLCP was not greatly affected by the treated organoclay at the nematic temperature of the TLCP. Rheological characterization demonstrated that the viscosity of the TC3 FS was less than one order of magnitude higher than that of the TLCP in the linear viscoelastic region, and the steady shear viscosity of the two materials was comparable in steady shear experiments. Thus, TC3 FS is a promising viscosity reduction agent for high molecular mass polyethylene (HMMPE), functioning similarly to TLCP. The 1.0 wt% TC3 FS in HMMPE has more efficient viscosity reduction ability than the 1.0 wt% TLCP in HMMPE, with lower yielding stress and yield-starting shear rate, as well as a narrower yield shear rate region. The viscosity reduction ability of the TLCP was enhanced by the treated organoclay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pryamitsyn V, Ganesan V (2005) Macromolecules 39:844

    Article  ADS  Google Scholar 

  2. Rubinstein M, Dobrynin AV (1999) Curr Opin Colloid Interface Sci 4:83

    Article  CAS  Google Scholar 

  3. Wyart FB, de Gennes PG (2000) Eur Phys J E 1:93

    Article  CAS  Google Scholar 

  4. Tang YH, Gao P, Ye L, Zhao CB (2009) e-Polymer (submitted)

  5. Tang YH, Gao P, Ye L, Zhao CB, Lin W (2010) J Mater Sci. doi:10.1007/s10853-010-4277-y

  6. Tang YH, Gao P, Ye L, Zhao CB (2010) J Polym Sci Part B Polym Phys 48:712

    Article  CAS  ADS  Google Scholar 

  7. Chan CK, Gao P (2005) Polymer 46:10890

    Article  CAS  Google Scholar 

  8. Chan CK, Whitehouse C, Gao P, Chai CK (2001) Polymer 42:7847

    Article  CAS  Google Scholar 

  9. Gao P, Lu XH, Chai CK (1996) Polym Eng Sci 36:2771

    Article  CAS  Google Scholar 

  10. Vaia RA, Vasudevan S, Krawiec W, Scanlon LG, Giannelis EP (1995) Adv Mater 7:154

    Article  CAS  Google Scholar 

  11. Huang WY, Han CD (2006) Macromolecules 39:257

    Article  CAS  ADS  Google Scholar 

  12. Huang WY, Han CD (2006) Polymer 47:4400

    Article  CAS  Google Scholar 

  13. Whitehouse C, Lu XL, Gao P, Chai CK (1997) Polym Eng Sci 37:1944

    Article  CAS  Google Scholar 

  14. Chan CK, Whitehouse C, Gao P (1999) Polym Eng Sci 39:1353

    Article  CAS  Google Scholar 

  15. Chan CK, Gao P (2005) Polymer 46:8151

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Y. H. Tang and P. Gao gratefully acknowledge the Research Grant Council of Hong Kong (Grant number HKUST6256/02) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhong Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Gao, P., Ye, L. et al. Organoclay/thermotropic liquid crystalline polymer nanocomposites. Part IV: organoclay of comparable size to fully extended TLCP molecules. J Mater Sci 45, 3336–3343 (2010). https://doi.org/10.1007/s10853-010-4354-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4354-2

Keywords

Navigation