Skip to main content

Advertisement

Log in

Electronic and optical properties of monoclinic and rutile vanadium dioxide

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electronic and optical properties of vanadium dioxide are investigated in the frameworks of density functional theory and GGA+U, in detail. It is found that, the metal–insulator transition in VO2 is induced by the on-site correlation effects, accompanied with a distinct charge-transfer. Unlike that in rutile phase, the energy gap in the monoclinic phase opens suddenly and abruptly, which is consistent with the experimental observation. The calculated indirect energy gap (0.32 eV) and the direct energy gap (0.58 eV) can be used to theoretically interpret the experimental optical transmission at 0.31 eV and the optical energy gap 0.6 eV, respectively. Consequently, both of them are confirmed by our optical calculation. Furthermore, our calculated optical absorption peaks agree with the experiment very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morin J (1959) Phys Rev Lett 3:34

    Article  CAS  ADS  Google Scholar 

  2. Takayuki U, Kozo O, Akio K (1993) J Phys Soc Jpn 62:2595

    Article  Google Scholar 

  3. Goering E, Schramme M, Müller O, Barth R, Paulin H, Klemm M, Denboer ML, Horn S (1997) Phys Rev B 55:4225

    Article  CAS  ADS  Google Scholar 

  4. Kim H-T, Chae B-G, Youn D-H, Maeng S-L, Kim G, Kang K-Y, Lim Y-S (2004) New J Phys 6:52

    Article  Google Scholar 

  5. Kim H-T, Chae B-G, Youn D-H, Lee S-J, Kim K, Lim Y-S (2005) Appl Phys Lett 86:242101

    Article  ADS  Google Scholar 

  6. Kim B-J, Lee YW, Choi S, Lim JW, Yun SJ, Kim H-T, Shin T-J, Yun H-S (2008) Phys Rev B 77:235401

    Article  ADS  Google Scholar 

  7. Eguchi R, Taguchi M, Matsunami M, Horiba K, Yamamoto K, Ishida Y, Chainani A, Takata Y, Yabashi M (2008) Phys Rev B 78:075115

    Article  ADS  Google Scholar 

  8. Xu SQ, Ma HP, Dai SX, Jiang ZG (2004) J Mater Sci 39:489. doi:10.1023/B:JMSC.0000011503.22893.f4

    Article  CAS  ADS  Google Scholar 

  9. Gopalakrishnan G, Ruzmetov D, Ramanathan S (2009) J Mater Sci 44:5345. doi:10.1007/s10853-009-3442-7

    Article  CAS  ADS  Google Scholar 

  10. Goodenough JB (1960) Phys Rev 117:1442

    Article  CAS  ADS  Google Scholar 

  11. Wentzcovitch RM, Schulz WW, Allen PB (1994) Phys Rev Lett 72:3389

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Rice TM, Launois H, Pouget JP (1994) Phys Rev Lett 73:3042

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Biermann S, Poteryaev A, Lichtenstein AI, Georges A (2005) Phys Rev Lett 94:026404

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Sakuma R, Miyake T, Aryasetiawan F (2008) Phys Rev B 78:075106

    Article  ADS  Google Scholar 

  15. Koethe TC, Hu Z, Haverkort MW, Schüßler-Langeheine C, Venturini F, Brookes NB, Tjernberg O, Reichelt W, Hsieh HH, Lin H-J, Chen CT, Tjeng LH (2006) Phys Rev Lett 97:116402

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Kim HT (2002) . Physica C 341–348:259

    Google Scholar 

  17. Brinkman WF, Rice TM (1970) Phys Rev B 2:4302

    Article  ADS  Google Scholar 

  18. Boyce JB, Bridges FG, Claeson T, Geballe TH, Li GG, Sleight AW (1991) Phys Rev B 44:6961

    Article  CAS  ADS  Google Scholar 

  19. Arcangeletti E, Baldassarre L, Castro DDi, Lupi S, Malavasi L, Marini C, Perucchi A, Postorino P (2007) Phys Rev Lett 98:196406

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Moore RG, Zhang J, Nascimento VB, Jin R, Guo Jiandong, Wang GT, Fang Z, Mandrus D, Plummer EW (2007) Science 318:615

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Berglund CN, Guggenheim HJ (1969) Phys Rev 185:1022

    Article  CAS  ADS  Google Scholar 

  22. Barker AS Jr, Verleur HW, Guggenheim HJ (1966) Phys Rev Lett 17:1286

    Article  CAS  ADS  Google Scholar 

  23. Verleur HW, Barker AS Jr, Berglund CN (1968) Phys Rev 172:788

    Article  CAS  ADS  Google Scholar 

  24. Paul W (1970) Mat Res Bull 5:691

    Article  CAS  Google Scholar 

  25. Gavini A, Kwan CCY (1972) . Phys Rev B 5:3138

    Article  ADS  Google Scholar 

  26. Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11:10757

    Article  CAS  PubMed  Google Scholar 

  27. Cohen AJ, Mori-Sánchez P, Yang W (2008) Phys Rev B 77:115123

    Article  ADS  Google Scholar 

  28. Cohen AJ, Mori-Sánchez P, Yang W (2008) Science 321:792

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Mosey NJ, Liao P, Carter EA (2008) J Chem Phys 129:014103

    Article  PubMed  ADS  Google Scholar 

  30. Mori-Sánchez P, Cohen AJ,Yang W (2009) Phys Rev Lett 102:066403

    Article  PubMed  ADS  Google Scholar 

  31. Janesko BG, Henderson TM, Scuseria GE (2009) Phys Chem Chem Phys 11:443

    Article  CAS  PubMed  Google Scholar 

  32. Nieminen RM (2009) Modelling Simul Mater Sci Eng 17:084001

    Article  ADS  Google Scholar 

  33. Segall MD, Lindan PLD, Probert MJ, Pickard C, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Matter 14:2717

    Article  CAS  ADS  Google Scholar 

  34. Hammer B, Hansen LB, Norskov JK (1999) Phys Rev B 59:7413

    Article  ADS  Google Scholar 

  35. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  ADS  Google Scholar 

  36. Vanderbilt D (1990) Phys Rev B 59:7892

    Article  ADS  Google Scholar 

  37. Anisimov V, Zaanen J, Andersen OK (1991) Phys Rev B 44:943

    Article  CAS  ADS  Google Scholar 

  38. Cococcioni M, De Gironcoli S (2005) Phys Rev B 71:035105

    Article  ADS  Google Scholar 

  39. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505

    Article  CAS  ADS  Google Scholar 

  40. Mulliken RS (1955) J Chem Phys 23:1833

    Article  CAS  ADS  Google Scholar 

  41. Davidson ER, Chakravorty S (1992) Theor Chim Acta 83:319

    Article  CAS  Google Scholar 

  42. Segall MD, Pickard CJ, Shah R, Payne MC (1996) Phys Rev B 54:16317

    Article  CAS  ADS  Google Scholar 

  43. McWhan DB, Marezio M, Remeika JP, Dernier PD (1974) Phys Rev B 10:490

    Article  CAS  ADS  Google Scholar 

  44. Longo JM, Kierkegaard P (1970) Acta Chim Scand 24:420

    Article  CAS  Google Scholar 

  45. Ladd LA, Paul W (1969) Solid State Commun 7:425

    Article  CAS  ADS  Google Scholar 

  46. Chung W, Freericks JK (1998) Phys Rev B 57:11955

    Article  CAS  ADS  Google Scholar 

  47. Hague CF, Mariot J-M, Ilakovac V, Delaunay R (2008) Phys Rev B 77:045132

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the major research program from the Ministry of Science and Technology of China under Grant No. 2009CB939901. Numerical computation of this work was carried out on the Parallel Computer Cluster of Institute for Condensed Matter Physics (ICMP) at School of Physics, Peking University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Hua Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, GH., Deng, XY. & Wen, R. Electronic and optical properties of monoclinic and rutile vanadium dioxide. J Mater Sci 45, 3270–3275 (2010). https://doi.org/10.1007/s10853-010-4338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4338-2

Keywords

Navigation