Skip to main content
Log in

Statistical quantification of the microstructural homogeneity of size and orientation distributions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Methodologies to quantify the microstructural homogeneity, or uniformity, have been developed based on the proposed statistical homogeneity theory. Two kinds of homogeneities are considered, for the size and orientation distributions, respectively. In the case of size distribution, the homogeneity is quantified using two parameters, H 0.1 and H 0.2, which are defined as the probabilities falling into the ranges of μ ± 0.1μ and μ ± 0.2μ, respectively, where μ is the mean size. Whereas in the case of orientation distribution, three parameters are used to quantify the homogeneity: H R, the mean resultant length that is a simple measure of the angular data concentration, and H 0.1 and H 0.2, which are the probabilities in particular angular ranges of the circular or spherical data. These homogeneity quantities are formularized using the common statistical models, and typical examples are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a, b, c:

Grain axes

COV or σ/μ:

Coefficient of variation

COV(d mean):

Coefficient of variation of the mean near-neighbor distance

\( \left( {\overline{C} ,\,\overline{S} } \right) \) :

Coordinates of mean resultant vector

D, D0.1 and D0.2:

Dispersion quantities

f :

Probability density function

G v :

Grain homogeneity parameter

H, H0.1 and H0.2:

Homogeneity quantities

H R :

Directional homogeneity quantity

HPq :

Dimensionless homogeneity parameter

K :

Curvature

L :

Length

N :

Total number, or measurement number

p :

Fitting parameter

\( \overline{R} \) :

Mean resultant length

r :

Correlation coefficient

s :

Sample standard deviation

U size :

Size uniformity

U sp :

Spatial uniformity

\( \overline{V} \) :

Mean volume

\( \overline{x} \) :

Sample mean

(x, y):

Mass center

\( (x_{\text{G}} ,y_{\text{G}} ) \) :

Mass gravity center

\( (x_{\text{S}} ,y_{\text{S}} ) \) :

Microstructural center

α and β:

Fitting parameters

ϕ:

Longitude

κ:

Fitting parameter

μ:

Population mean

θ:

Angle, or colatitude

ρ:

Population mean resultant length

σ:

Population standard deviation

\( \sigma_{\text{ga}} \) :

Standard deviation of the grain areas

References

  1. Underwood EE (1970) Quantitative stereology. Addison-Wesley, Reading

    Google Scholar 

  2. Takayama Y, Tozawa T, Kato H, Akaneya Y, Chang IS (1996) J Japn Inst Met 60:44 (in Japanese)

    Google Scholar 

  3. Heijman MJGW, Benes NE, ten Elshof JE, Verweij H (2002) Mater Res Bull 37:141

    Article  CAS  Google Scholar 

  4. Hendriks MGHM, Heijman MJGW, van Zyl WE, ten Elshof JE, Verweij H (2002) J Am Ceram Soc 85:2097

    Article  CAS  Google Scholar 

  5. Sidor Y, Dzubinsky M, Kovac F (2003) Mater Charact 51:109

    Article  CAS  Google Scholar 

  6. Sidor Y, Dzubinsky M, Kovac F (2005) J Mater Sci 40:6257. doi:10.1007/s10853-005-3145-7

    Article  CAS  ADS  Google Scholar 

  7. Gadala-Maria F, Parsi F (1993) Polym Compos 14:126

    Article  CAS  Google Scholar 

  8. Fu SY, Lauke B (1996) Compos Sci Technol 56:1179

    Article  CAS  Google Scholar 

  9. Kim HS (2004) Fiber Polym 5:177

    Article  Google Scholar 

  10. Reihanian M, Ebrahimi R, Moshksar MM, Terada D, Tsuji N (2008) Mater Charact 59:1312

    Article  CAS  Google Scholar 

  11. Luo ZP (2006) Acta Mater 54:47

    Article  CAS  ADS  Google Scholar 

  12. Suzuki S, Takeda K (2000) J Wood Sci 46:289

    Article  Google Scholar 

  13. Rigdahl M, Andersson H, Westerlind B, Hollmark H (1983) Fibre Sci Technol 19:127

    Article  Google Scholar 

  14. Schulgasser K (1985) J Mater Sci 20:859. doi:10.1007/BF00585727

    Article  ADS  Google Scholar 

  15. Russ JC (1991) Mater Charact 27:185

    Article  CAS  Google Scholar 

  16. Carpenter DT, Rickman JM, Barmak K (1998) J Appl Phys 84:5843

    Article  CAS  ADS  Google Scholar 

  17. Roebuck B (2000) Mater Sci Technol 16:1167

    CAS  Google Scholar 

  18. Takahashi J, Suito H (2001) Acta Mater 49:711

    Article  CAS  Google Scholar 

  19. Chen SP, Hanlon DN, Van der Zwaag S, Pei YT, Dehosson JTM (2002) J Mater Sci 37:989. doi:10.1023/A:1014356116058

    Article  CAS  Google Scholar 

  20. Susan D (2005) Metall Mater Trans A 36:2481

    Article  Google Scholar 

  21. Duarte MT, Liu HY, Kou SQ, Lindqvist PA, Miskovsky K (2005) J Mater Eng Perform 14:104

    Article  CAS  Google Scholar 

  22. Zhilyaev AP, Swaminathan S, Gimazov AA, McNelley TR, Langdon TG (2008) J Mater Sci 43:7451. doi:10.1007/s10853-008-2714-y

    Article  CAS  ADS  Google Scholar 

  23. Luo ZP, Koo JH (2007) J Microsc 225:118

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  24. Dougherty ER (1990) Probability and statistics for the engineering, computing, and physical sciences. Prentic-Hall, Inc., Englewood Cliffs, New Jersey

    MATH  Google Scholar 

  25. Schwarz H, Exner HE (1983) J Microsc 129:155

    Google Scholar 

  26. Yang N, Boselli J, Sinclair I (2001) J Microsc 201:189

    Article  PubMed  MathSciNet  Google Scholar 

  27. Ganguly P, Poole WJ (2002) Mater Sci Eng A332:301

    CAS  Google Scholar 

  28. Luo ZP, Koo JH (2008) Mater Lett 62:3493

    Article  CAS  Google Scholar 

  29. Luo ZP, Koo JH (2008) Polymer 49:1841

    Article  CAS  Google Scholar 

  30. Morawiec A (2004) Orientations and rotations: computations in crystallographic textures. Springer, Berlin

    MATH  Google Scholar 

  31. Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  32. Mardia KV, Jupp PE (2000) Directional statistics. Wiley, West Sussex, England

    MATH  Google Scholar 

  33. Jammalamadaka SR, SenGupta A (2001) Topics in circular statistics. World Scientific Publishing Co., Pte. Ltd., Singapore

    MATH  Google Scholar 

  34. Watson GS (1983) Statistics on spheres. Wiley, New York

    MATH  Google Scholar 

  35. Fisher NI, Lewis T, Embleton BJJ (1987) Statistical analysis of spherical data. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  36. Borradaile G (2003) Statistics of earth science data: their distribution in time, space, and orientation. Springer, Berlin

    MATH  Google Scholar 

  37. Nelson PR, Coffin M, Copeland KAF (2003) Introductory statistics for engineering experimentation. Elsevier, Amsterdam

    Google Scholar 

  38. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Biophoton Int 11:36

    Google Scholar 

  39. Al-Khedher MA, Pezeshki C, McHale JL, Knorr FJ (2007) Nanotechnology 18:355703 (11pp)

    Article  Google Scholar 

  40. Chen SH, Chen CC, Luo ZP, Chao CG (2009) Mater Lett 63:1165

    Article  CAS  Google Scholar 

  41. Potter PE, Pettijohn FJ (1977) Paleocurrents and basin analysis. Springer, Berlin

    Google Scholar 

Download references

Acknowledgement

The author thanks three reviewers for their in-depth critical comments and constructive suggestions to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. P. Luo.

Appendices

Appendix 1: Size distribution

Normal and lognormal distribution

The normal and lognormal distributions were studied previously [23]. For a normal distribution,

$$ H_{0. 1} = 6. 8 8 4 3\times 10^{ - 5} + 7. 9 6 4\times 10^{ - 2} (\mu /\sigma ) + 1.0 4 3\times 10^{ - 4} (\mu /\sigma )^{ 2} - 1. 6 2 8 6\times 10^{ - 4} (\mu /\sigma )^{ 3} + 3. 8 6 3 9\times 10^{ - 6} (\mu /\sigma )^{ 4} \quad(r = 1), $$
(19a)
$$ H_{0. 2} = - 4.0 1 1 7\times 10^{ - 4} + 0. 1 60 5 6(\mu /\sigma ) - 2. 8 1 1 8\times 10^{ - 4} (\mu /\sigma )^{ 2} - 1. 1 8 2 6\times 10^{ - 3} (\mu /\sigma )^{ 3} + 5. 60 8 4\times 10^{ - 5} (\mu /\sigma )^{ 4} \quad(r = 1). $$
(19b)

For a lognormal distribution,

$$ H_{0. 1} = 1. 1 5 3 9\times 10^{ - 2} + 7. 5 9 3 3\times 10^{ - 2} (\mu /\sigma ) + 6. 6 8 3 8\times 10^{ - 4} (\mu /\sigma )^{ 2} - 1. 9 1 6 9\times 10^{ - 4} (\mu /\sigma )^{ 3} + 3. 9 20 1\times 10^{ - 6} (\mu /\sigma )^{ 4} \quad(r = 0. 9 9 9 9 8), $$
(20a)
$$ H_{0. 2} = 2. 2 6 6\times 10^{ - 2} + 0. 1 5 6 2 9(\mu /\sigma ) + 4. 4 4 2\times 10^{ - 4} (\mu /\sigma )^{ 2} - 1. 2 7 3 8\times 10^{ - 3} (\mu /\sigma )^{ 3} + 5. 9 9 7 8\times 10^{ - 5} (\mu /\sigma )^{ 4} \quad(r = 0. 9 9 9 9 6). $$
(20b)

Gamma distribution

The density distribution of a gamma distribution is defined by

$$ f (x )= \left\{ {\begin{array}{ll} {{\frac{{\beta^{ - \alpha } }}{\Upgamma (\alpha )}}x^{\alpha - 1} {\text{e}}^{ - x/\beta } ,\quad{\text{ if }}x \, > 0 ,} \\ {0,\quad{\text{ if }}x \, \le 0.} \\ \end{array} } \right. $$
(21)

Its mean and variance are

$$ \mu = \alpha \beta ,\,\sigma^{2} = \alpha \beta^{2} . $$
(22)

Here, the gamma function Γ(α) in Eq. 21 is expressed as \( \Upgamma (\alpha )= \int_{ \, 0}^{ \, \infty } {t^{\alpha - 1} {\text{e}}^{ - t}\,{\text{d}}t} . \) The probability distribution function for the gamma distribution is F(x) = 0 for x ≤ 0 and \( F(x)=\gamma ({\frac{x}{\beta }};\alpha ) \) for x > 0. Here, γ is the incomplete gamma function, \( \gamma (x;\alpha )= {\frac{1}{\Upgamma (\alpha )}}\int_{ \, 0}^{ \, x} {t^{\alpha - 1} {\text{e}}^{ - t}\,{\text{d}}t} , \) whose value can be found in statistical references or online programs.

From Eq. 22, \( \mu /\sigma = \sqrt \alpha , \) thus \( \alpha = (\mu /\sigma )^{2} . \) Hence, the homogeneity

$$ H_{ 0. 1} = F (1.1\mu )- F (0.9\mu )= \gamma (1.1\alpha ;\alpha )- \gamma (0.9\alpha ;\alpha )= \gamma [1.1 (\mu /\sigma )^{2} ; (\mu /\sigma )^{2} ]- \gamma [0.9 (\mu /\sigma )^{2} ; (\mu /\sigma )^{2} ] , $$
(23a)
$$ H_{ 0. 2} = F (1.2\mu )- F (0.8\mu ) = \gamma (1.2\alpha ;\alpha )- \gamma (0.8\alpha ;\alpha )= \, \gamma [1.2 (\mu /\sigma )^{2} ; (\mu /\sigma )^{2} ]- \gamma [0.8 (\mu /\sigma )^{2} ; (\mu /\sigma )^{2} ]. \, $$
(23b)

From these two equations, H 0.1 and H 0.2 are functions of a single variable μ/σ. For convenience, they are regressed as

$$ H_{0. 1} = - 8. 1 3 7 8\times 10^{ - 3} + 8. 2 5 7 6\times 10^{ - 2} (\mu /\sigma ) - 1. 3 3 5\times 10^{ - 4} (\mu /\sigma )^{ 2} - 1. 7 3 8 8\times 10^{ - 4} (\mu /\sigma )^{ 3} + 5. 3 40 8\times 10^{ - 6} (\mu /\sigma )^{ 4} \quad(r = 0. 9 9 9 9 9), $$
(24a)
$$ H_{0. 2} = - 1. 70 3 9\times 10^{ - 2} + 0. 1 6 8 4 4(\mu /\sigma ) - 9. 1 7 1 6\times 10^{ - 4} (\mu /\sigma )^{ 2} - 1. 2 3 4 6\times 10^{ - 3} (\mu /\sigma )^{ 3} + 6. 1 5 7 1\times 10^{ - 5} (\mu /\sigma )^{ 4} \quad(r = 0. 9 9 9 9 7). $$
(24b)

Note that the gamma distribution yields a special case of Erlang distribution when α = k is an integer, or the chi-square distribution when α = ν/2 and β = 2 [24]. As H 0.1 and H 0.2 are only related to the ratio μ/σ but not related to specific α or β, the homogeneity equations, as expressed in Eqs. 23a, 23b and 24a, 24b, remain valid for both Erlang and chi-square distributions.

Weibull distribution

The density distribution of a Weibull distribution is defined by:

$$ f (x )= \left\{ {\begin{array}{ll} {\alpha \beta^{ - \alpha } x^{\alpha - 1} {\text{e}}^{{ - (x/\beta )^{\alpha } }} ,\quad{\text{ if }}x \, > 0 ,} \\ {0,\quad{\text{ if }}x \, \le 0.} \\ \end{array} } \right. $$
(25)

Its mean and variance are

$$ \mu = \beta \, \Upgamma \left({\frac{\alpha + 1}{\alpha }} \right) ,\,\sigma^{2} = \beta^{2} \, \left[ {\Upgamma \left({\frac{\alpha + 2}{\alpha }} \right)- \Upgamma^{2} \left({\frac{\alpha + 1}{\alpha }} \right)} \right]. $$
(26)

Thus, we have

$$ (\mu /\sigma )= {\frac{{\Upgamma \left( {{\frac{\alpha + 1}{\alpha }}} \right)}}{{\sqrt {\Upgamma \left( {{\frac{\alpha + 2}{\alpha }}} \right) - \Upgamma^{2} \left( {{\frac{\alpha + 1}{\alpha }}} \right)} }}},\,{\text{or}}\,{\frac{{1 + (\mu /\sigma )^{2} }}{{ (\mu /\sigma )^{2} }}} = {\frac{{\Upgamma \left( {{\frac{\alpha + 2}{\alpha }}} \right)}}{{\Upgamma^{2} \left( {{\frac{\alpha + 1}{\alpha }}} \right)}}}. $$
(27)

From Eq. 27, the relationship between α and (μ/σ) can be established, and their relationship is expressed as:

$$ \alpha = 8. 8 9 4 7\times 10^{ - 2} + 0. 8 4 3 4(\mu /\sigma ) + 0. 10 30 6(\mu /\sigma )^{ 2} - 1.0 6 8 3\times 10^{ - 2} (\mu /\sigma )^{ 3} + 4.00 4 5\times 10^{ - 4} (\mu /\sigma )^{ 4} \quad(r = 1). $$
(28)

The probability distribution function for the Weibull distribution is F(x) = 0 for x ≤ 0 and \( F(x) = 1 - {\text {e}}^{{ - (x/\beta )^{\alpha } }} \) for x > 0. Therefore, the homogeneity degree of the Weibull distribution is:

$$ H_{0. 1} = F (1.1\mu )- F (0.9\mu ) = {\text{e}}^{{ - (0.9\mu /\beta )^{\alpha } }} - {\text{e}}^{{ - (1.1\mu /\beta )^{\alpha } }} = {\text{e}}^{{ - \left[ {0.9{{\Upgamma}}\left( {{\frac{\alpha + 1}{\alpha }}} \right)} \right]^{{_{\alpha } }} }} - {\text{e}}^{{ - \left[ {1.1{{\Upgamma}}\left( {{\frac{\alpha + 1}{\alpha }}} \right)} \right]^{{_{\alpha } }} }} , $$
(29a)
$$ H_{0. 2} = F (1.2\mu )- F (0.8\mu )= {\text{e}}^{{ - (0.8\mu /\beta )^{\alpha } }} - {\text{e}}^{{ - (1.2\mu /\beta )^{\alpha } }} = {\text{e}}^{{ - \left[ {0.8\Upgamma \left( {{\frac{\alpha + 1}{\alpha }}} \right)} \right]^{\alpha } }} - {\text{e}}^{{ - \left[ {1.2\Upgamma \left( {{\frac{\alpha + 1}{\alpha }}} \right)} \right]^{\alpha } }} . $$
(29b)

Here, \( \mu /\beta = \, \Upgamma \left( {{\frac{\alpha + 1}{\alpha }}} \right) \) according to Eq. 26. For a given μ/σ, the value α can be evaluated from Eq. 28, and thus H 0.1 and H 0.2 can be calculated. For convenience, these equations are regressed as:

$$ H_{0. 1} = 2.0 5 4 9\times 10^{ - 3} + 6. 9 9 5 4\times 10^{ - 2} (\mu /\sigma ) + 2. 60 8 7\times 10^{ - 3} (\mu /\sigma )^{ 2} - 3. 6 6 3\times 10^{ - 4} (\mu /\sigma )^{ 3} + 1.0 20 6\times 10^{ - 5} (\mu /\sigma )^{ 4} \quad(r = 1), $$
(30a)
$$ H_{0. 2} = 5. 9 7 5\times 10^{ - 3} + 0. 1 3 70 9(\mu /\sigma ) + 7. 1 5 4 2\times 10^{ - 3} (\mu /\sigma )^{ 2} - 1. 8 9 8 2\times 10^{ - 3} (\mu /\sigma )^{ 3} + 7. 6 2 6 8\times 10^{ - 5} (\mu /\sigma )^{ 4} \quad(r = 1). $$
(30b)

Note that the Weibull distribution yields a special case, Rayleigh distribution, by taking α = 2 and \( \beta = \sqrt 2 \eta \) [24]. As H 0.1 and H 0.2 are not related to specific α or β values in these H equations, they can also be used for the homogeneity quantification of the Rayleigh distribution.

Beta distribution

The beta distribution is defined as:

$$ f (x )= {\frac{1}{B (\alpha ,\beta )}}x^{\alpha - 1} (1 - x )^{\beta - 1} ,\quad0 < x < 1, $$
(31)

where α and β are two independent fitting parameters, and B(α,β)=Γ(α)Γ(β)/Γ(α+β). Its mean \( \mu = \alpha / (\alpha + \beta ) \) and variance \( \sigma^{2} = \alpha \beta / [ (\alpha + \beta )^{ 2} (\alpha + \beta + 1 ) ] , \) and thus \( (\mu /\sigma )^{2} = \alpha (\alpha + \beta + 1 ) /\beta . \) For a given pair of α and β, particular H values can be computed numerically by integrating \( f(x) \) in Eq. 31 over the range of μ ± 0.1μ or μ ± 0.2μ. Figure 8 shows some of the computation results of the beta distribution for 0 < α, β ≤ 10, as plotted as H versus \( (\mu /\sigma )= \sqrt {\alpha (\alpha + \beta + 1 ) /\beta } . \) The normal distribution is included for comparison. Different to the previous distributions, the homogeneity parameters H 0.1 and H 0.2 here are functions of the ratio μ/σ as well as α (or β), i.e., for a given μ/σ, H 0.1, and H 0.2 are no longer monotonic but may possess different values depending on α or β. Only when α = β, H 0.1 and H 0.2 are monotonic functions of μ/σ, which as expressed as:

$$ \begin{gathered} H_{0. 1} \, = \, - 0. 1 9 3 9 9+ 0. 2 5 5 7(\mu /\sigma ) - 0.0 7 2 2 2 6(\mu /\sigma )^{ 2} + 1. 5 50 3\times 10^{ - 2} (\mu /\sigma )^{ 3} - 1. 8 4 1 1\times 10^{ - 3} (\mu /\sigma )^{ 4} + 1. 1 1 6 8\times 10^{ - 4} (\mu /\sigma )^{ 5} - \hfill \\ 2. 7 1 9 4\times 10^{ - 6} (\mu /\sigma )^{ 6} \quad(r \, = \, 0. 9 9 9 9 9), \hfill \\ \end{gathered} $$
(32a)
$$ \begin{gathered} H_{0. 2} \, = \, - 0. 3 9 2 3+ 0. 5 1 7 2 2(\mu /\sigma ) - 0. 1 4 4 8 9(\mu /\sigma )^{ 2} + 3.00 5 4\times 10^{ - 2} (\mu /\sigma )^{ 3} - 3. 6 4 2 6\times 10^{ - 3} (\mu /\sigma )^{ 4} + 2. 2 6 4 1\times 10^{ - 4} (\mu /\sigma )^{ 5} - \hfill \\ 5. 60 4\times 10^{ - 6} (\mu /\sigma )^{ 6} \quad(r \, = \, 0. 9 9 9 9 8). \hfill \\ \end{gathered} $$
(32b)
Fig. 8
figure 8

Homogeneity quantities H 0.1 and H 0.2 of the beta distribution, as compared with the normal distribution. Each dot corresponds to a pair of (α, β) values (not shown), while a special case with α = β is highlighted

As shown in Fig. 8, the H values with α = β are highlighted, which are getting close to the normal distribution at higher ratio μ/σ.

Moreover, the homogeneity H functions of the uniform, exponential, Laplace, Pareto, or any other distributions [24] can be formularized from their specific integration forms, while these models are not commonly used for the size distribution modeling.

Appendix 2: Orientation distribution

Circular data

Wrapped normal distribution

The density distribution of the wrapped normal distribution is described as

$$ f (\theta )= {\frac{1}{2\pi }} + {\frac{1}{\pi }}\sum\limits_{p = 1}^{\infty } {\rho^{{p^{2} }} \cos [p (\theta - \mu ) ]} , \quad 0 \le \, \theta \, < 2\pi , \,\, 0 \le \, \rho \, \le 1. $$
(33)

Its mean is μ, and mean resultant length is ρ. By numerical computation, the relationship of H R, H 0.1, and H 0.2 with ρ are obtained, as shown in Fig. 9, which are expressed as follows:

$$ H_{\text{R}} = \rho , $$
(34a)
$$ H_{0. 1} \, = \, 0. 100 1 1+ 0.0 4 7 10 9\rho + 4. 4 8 8 6\rho^{ 2} - 4 5. 2 6 7\rho^{ 3} + 2 1 6.0 3\rho^{ 4} - 5 4 9. 1 6\rho^{ 5} + 7 6 6. 2 8\rho^{ 6} - 5 5 3. 3 7\rho^{ 7} + 1 6 1. 9 2\rho^{ 8} \quad \left( {r \, = \, 0. 9 9 9 9 5} \right), $$
(34b)
$$ H_{0. 2} \, = \, 0. 1 9 9 7 9+ 0. 6 2 9 5\rho - 7. 1 1 5 2\rho^{ 2} + 6 7. 7 3 8\rho^{ 3} - 30 5. 8 5\rho^{ 4} + 7 3 8. 8 9\rho^{ 5} - 9 7 7. 1 4\rho^{ 6} + 6 6 7. 1 8\rho^{ 7} - 1 8 3. 5 2\rho^{ 8} \quad \left( {r \, = \, 0. 9 9 9 9 7} \right). $$
(34c)
Fig. 9
figure 9

Homogeneity H of wrapped normal distribution

Wrapped Cauchy distribution

The density distribution of the wrapped Cauchy distribution, with mean direction μ and mean resultant length ρ, is described as:

$$ f (\theta )= {\frac{1}{2\pi }}{\frac{{1 - \rho^{2} }}{{1 + \rho^{2} - 2\rho \cos (\theta - \mu )}}}, \quad 0 \le \, \theta \, < 2\pi , \,\, 0 \le \, \rho \, \le 1. $$
(35)

The relationships of H R, H 0.1 and H 0.2 with ρ are shown in Fig. 10, which are expressed as follows:

$$ H_{\text{R}} = \rho , $$
(36a)
$$ H_{0. 1} \, = \, 0. 1+ 0. 2 5 4 4 7\rho - 0. 5 7 7 2 8\rho^{ 2} + 4. 1 1 1 5\rho^{ 3} - 9. 2 6 5 4\rho^{ 4} + 10. 6 1 7\rho^{ 5} - 4. 2 3 9 2\rho^{ 6} \quad(r \, = \, 0. 9 9 9 9 9), $$
(36b)
$$ H_{0. 2} \, = \, 0. 2+ 0. 3 6 2 7 4\rho + 0. 4 5 3 2 9\rho^{ 2} - 0. 5 6 5 5 1\rho^{ 3} + 1. 8 8 3 6\rho^{ 4} -0. 8 6 9 2\rho^{ 5} + 0. 5 3 4 7 9\rho^{ 6}\quad \left( {r \, = 1} \right). $$
(36c)
Fig. 10
figure 10

Homogeneity H of wrapped Cauchy distribution

von Mises distribution

The widely used von Mises distribution, with mean direction μ, is described by a density function of

$$ f (\theta )= {\frac{1}{{2\pi {\kern 1pt} I_{0} (\kappa )}}}{\text{e}}^{\kappa\cos (\theta - \mu )} , \quad 0 \le \theta < 2\pi , \,\, 0 \le \kappa < \infty , $$
(37)

where I 0 denotes the modified Bessel function of the first kind, with order 0 (p = 0). In general with the order p, it is defined by

$$ I_{p} (\kappa )= {\frac{1}{2\pi }}\int\limits_{0}^{2\pi } {\cos p\theta \;{\text{e}}^{\kappa \cos \theta } {\text{d}}\theta } ,\;{\text{or}}\;I_{p} (\kappa )= \sum\limits_{r = 0}^{\infty } {{\frac{1}{\Upgamma (p + r + 1 )\Upgamma (r + 1 )}}} \left( {{\frac{\kappa }{2}}} \right)^{2r + p} . $$
(38)

Its mean resultant length is \( \rho = I_{1} (\kappa )/I_{0} (\kappa ). \) According to these relationships, H R, H 0.1, and H 0.2 are numerically computed, as shown in Fig. 11. In the range of κ ≤ 20 that covers most practical values, they are expressed as:

$$ \begin{gathered} H_{\text{R}} = \rho = \, 0. 6 20 2 1\kappa - 0. 1 8 6 40\kappa^ 2 + 3. 1 4 7 7\times 10^{ - 2} \kappa^ 3 - 3. 1 7 7\times 10^{ - 3} \kappa^{ 4} + 1. 9 4 3 3\times 10^{ - 4} \kappa^{ 5} - 6. 9 9 1 4\times 10^{ - 6} \kappa^{ 6} + 1. 3 4 1 7\times 10^{ - 7} \kappa^{ 7} - \hfill \\ 1.0 3 5 5\times 10^{ - 9} \kappa^{ 8} \quad(r \, = \, 0. 9 9 9 5 5), \hfill \\ \end{gathered} $$
(39a)
$$ \begin{gathered} H_{{0. 1 }} = \, 0. 1+ 0. 1 2 2 6 8\kappa - 3. 5 6\times 10^{ - 3} \kappa^{ 2} - 3. 1 7 2 5\times 10^{ - 3} \kappa^{ 3} + 7. 3 7 9 4\times 10^{ - 4} \kappa^{ 4} - 7. 7 4 7 5\times 10^{ - 5} \kappa^{ 5} + 4. 3 6 6 5\times 10^{ - 6} \kappa^{ 6} - \hfill \\ 1. 2 7 8 2\times 10^{ - 7} \kappa^{ 7} + 1. 5 2 7\times 10^{ - 9} \kappa^{ 8} \quad(r \, = \, 0. 9 9 9 9 6), \hfill \\ \end{gathered} $$
(39b)
$$ \begin{gathered} H_{{0. 2 }} = \, 0. 2+ 0. 2 3 8 3 7\kappa - 2. 1 7 4 1\times 10^{ - 2} \kappa^{ 2} - 3. 3 7 6 1\times 10^{ - 3} \kappa^{ 3} + 1. 1 1 3 4\times 10^{ - 3} \kappa^{ 4} - 1. 2 6 8 3\times 10^{ - 4} \kappa^{ 5} + 7. 40 5 3\times 10^{ - 6} \kappa^{ 6} - \hfill \\ 2. 2 10 5\times 10^{ - 7} \kappa^{ 7} + 2. 6 7 4\times 10^{ - 9} \kappa^{ 8} \quad(r \, = \, 0. 9 9 9 7 8). \hfill \\ \end{gathered} $$
(39c)
Fig. 11
figure 11

Homogeneity H of von Mises distribution

Cardioid distribution

The cardioid distribution, with a mean direction at μ, has the density function as follows:

$$ f (\theta )= {\frac{1}{2\pi }} [1 + 2\rho \cos (\theta - \mu ) ], \quad 0 \le \, \theta \, < 2\pi , \,\, \left| \rho \right| \le {\frac{1}{2}}. $$
(40)

Its mean resultant length is ρ, thus

$$ H_{\text{R}} = \rho . $$
(41a)

According to Eq. 40, the density function at ρ = 0.5, 0, −0.5 are shown in Fig. 12a. When ρ = 0.5, the maximum f is at θ = 0, so μ = 0. Therefore, H 0.1 and H 0.2 include areas on the right side of θ = 0 and left side of θ = 2π, as shown in the shadowed areas in Fig. 12a. While when ρ = −0.5, H 0.1 and H 0.2 are obtained from the areas with μ = π. Along with H R, the calculated results of H 0.1 and H 0.2 are shown in Fig. 12b, which are computed as:

$$ H_{0. 1} = \, 0. 1 + \, 0. 1 9 6 7 3 \left| \rho \right| \quad(r \, = 1), $$
(41b)
$$ H_{0. 2} = \, 0. 2 + \, 0. 3 7 4 1 9 6\left| \rho \right|\quad(r \, = 1). $$
(41c)
Fig. 12
figure 12

PDF (a) and homogeneity H (b) of cardioid distribution

Triangle distribution

The triangle distribution, with mean direction at μ, has the density function as follows [33]:

$$ f\left( \theta \right) = {\frac{1}{8\pi }}\left( {4 - \pi^{2} \rho + 2\pi \rho |\pi - \theta } \right),\quad0 \le \, \theta \, < 2\pi ,\,\,0 \le \rho \le {\frac{4}{{\pi^{2} }}}. $$
(42)

From this function, it is computed that

$$ H_{\text{R}} = \, \rho , \, $$
(43a)
$$ H_{0. 1} = \, 0. 1 + \, 0. 2 2 20 9\rho \quad(r \, = 1), $$
(43b)
$$ H_{0. 2} = \, 0. 2 + \, 0. 3 9 5 2 2\rho \quad(r \, = 1). $$
(43c)

For other distribution models, H R, H 0.1, and H 0.2 then can be computed in similar ways. Even when the ρ of a model is not available, for example, the nonsymmetrical models given by Fu and Lauke [8], the H 0.1 and H 0.2 can be calculated numerically.

Spherical data

Fisher distribution

The density function of Fisher distribution [35], with mean direction along the z axis, is expressed as:

$$ f (\theta ,\varphi )= (\kappa /4\pi { \sinh }\kappa ) {\text{exp(}}\kappa { \cos }\theta ) {\text{sin}}\theta , $$
(44)

where κ is the concentration parameter, which controls the curved shape, as plotted for some values in Fig. 13a. Its

$$ H_{\text{R}} = \rho = { \coth }\kappa - 1/\kappa . $$
(45a)

Accordingly, the H values are calculated for different κ (Fig. 13b), and regressed as:

$$ \begin{gathered} H_{0. 1} \, = 1. 2 9 9 4\times 10^{ - 2} + 4. 4 1 6 3\times 10^{ - 2} \kappa - 5.0 1 8 9\times 10^{ - 4} \kappa^{ 2} - 2. 6 1 7 7\times 10^{ - 5} \kappa^{ 3} + 1. 3 5 1 8\times 10^{ - 6} \kappa^{ 4} - 2. 90 2 8\times 10^{ - 8} \kappa^{ 5} + 3. 3 3 5\times 10^{ - 10} \kappa^{ 6} - \hfill \\ 1. 9 9 1 8\times 10^{ - 1 2} \kappa^{ 7} + 4. 8 5 3 3\times 10^{ - 1 5} \kappa^{ 8} \quad \left( {r \, = \, 0. 9 9 9 9 9} \right), \hfill \\ \end{gathered} $$
(45b)
$$ \begin{gathered} H_{0. 2} \, = \, 0.0 60 2 4 1+ 0. 1 5 8 7 6\kappa - 1. 1 7 7 5\times 10^{ - 2} \kappa^{ 2} + 4. 8 7 5 7\times 10^{ - 4} \kappa^{ 3} - 1. 2 1 6 3\times 10^{ - 5} \kappa^{ 4} + 1. 8 6 3 7\times 10^{ - 7} \kappa^{ 5} - 1. 7 1 3 4\times 10^{ - 9} \kappa^{{ 6 }} + \hfill \\ 8. 6 6 2 1\times 10^{ - 1 2} \kappa^{ 7} - 1. 8 4 9 5\times 10^{ - 1 4} \kappa^{ 8} \quad \left( {r \, = \, 0. 9 9 9 8 7} \right). \hfill \\ \end{gathered} $$
(45c)
Fig. 13
figure 13

PDF (a) and homogeneity H (b) of Fisher distribution

Watson distribution

The density function of Watson distribution [35], with mean direction along the z-axis, is expressed as

$$ f (\theta ,\varphi )= C_{\text{W}} {\text{exp(}}\kappa { \cos }^{2} \theta ) {\text{sin}}\theta , $$
(46)

where \( C_{\text{W}} = 1/ [4\pi \int_{ \, 0}^{ \, 1} {{\text{exp(}}\kappa u^{2} ) {\text{d}}u} ] \). When κ ≥ 0, the distribution f is plotted in Fig. 14a, with H 0.1 and H 0.2 areas indicated. As the another half at the supplementary angle (π − θ) in not included, the maximum H value is 0.5. Its ρ is not available. However, the H quantities are calculated numerically as shown in Fig. 14b for 0 ≤ κ ≤ 40, which are expressed as:

$$ \begin{gathered} H_{0. 1} \, = 2. 4 6 9\times 10^{ - 2} + 1. 2 7 5 4\times 10^{ - 2} \kappa + 7.0 8 6 1\times 10^{ - 3} \kappa^{ 2} - 1. 1 1 1 9\times 10^{ - 3} \kappa^{ 3} + 8. 2 3 9 2\times 10^{ - 5} \kappa^{ 4} - 3. 50 1 3\times 10^{ - 6} \kappa^{ 5} + \hfill \\ 8. 6 5 8 7\times 10^{ - 8} \kappa^{ 6} - 1. 1 5 7 3\times 10^{ - 9} \kappa^{ 7} + 6. 4 60 9\times 10^{ - 1 2} \kappa^{ 8} \, \left( {r \, = 1} \right), \hfill \\ \end{gathered} $$
(47a)
$$ \begin{gathered} H_{0. 2} \, = 9. 5 3 4 5\times 10^{ - 2} + 4. 3 9 6 4\times 10^{ - 2} \kappa + 1. 4 3 1 8\times 10^{ - 2} \kappa^{ 2} - 3. 9 4 3 5\times 10^{ - 3} \kappa^{ 3} + 4. 30 4 7\times 10^{ - 4} \kappa^{ 4} - 2. 6 1 9 3\times 10^{ - 5} \kappa^{ 5} + \hfill \\ 9. 5 6 5 3\times 10^{ - 7} \kappa^{ 6} - 2.0 8 4 4\times 10^{ - 8} \kappa^{ 7} + 2. 500 2\times 10^{ - 10} \kappa^{ 8} - 1. 2 70 9\times 10^{ - 1 2} \kappa^{ 9} \quad \left( {r = \, 0. 9 9 9 9 7} \right). \hfill \\ \end{gathered} $$
(47b)
Fig. 14
figure 14

PDF (a) and homogeneity H (b) of Watson distribution

However when κ < 0, as plotted in Fig. 14a, the f maximum value is at 0.5π, i.e., at the equator, which is the girdle case. It is more reasonable to define the homogeneity, denoted as H′, around 0.5π, as shown in Fig. 14a. Within −40 ≤ κ < 0, the H′ is expressed as:

$$ H_{0.1}^{'} = \, 0. 1 5 3 9 1- 5. 8 3 3\times 10^{ - 2} \kappa - 3. 2 5 1 7\times 10^{ - 3} \kappa^{ 2} - 1. 3 3 8 4\times 10^{ - 4} \kappa^{ 3} - 3. 4 2 8 6\times 10^{ - 6} \kappa^{ 4} - 4. 7 8 2 7\times 10^{ - 8} \kappa^{ 5} - 2. 7 6 3 4\times 10^{ - 10} \kappa^{{ 6 }} \quad(r \, = 1), $$
(48a)
$$ H_{0.2}^{'} = \, 0. 30 50 1- 0. 10 6 3 9\kappa - 8. 3 4 1 5\times 10^{ - 3} \kappa^{ 2} - 3. 9 3 2 7\times 10^{ - 4} \kappa^{ 3} - 1.0 9 8 3\times 10^{ - 5} \kappa^{ 4} - 1. 6 5 7 2\times 10^{ - 7} \kappa^{ 5} - 1.0 3 5 9\times 10^{ - 9} \kappa^{ 6} \quad(r \, = \, 0. 9 9 9 9 9). $$
(48b)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Z.P. Statistical quantification of the microstructural homogeneity of size and orientation distributions. J Mater Sci 45, 3228–3241 (2010). https://doi.org/10.1007/s10853-010-4330-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4330-x

Keywords

Navigation