Skip to main content

Microwave sintering improves the mechanical properties of biphasic calcium phosphates from hydroxyapatite microspheres produced from hydrothermal processing

Abstract

Starting from two microspherical agglomerated HAP powders, porous biphasic HAP/TCP bioceramics were obtained by microwave sintering. During the sintering the HAP powders turned into biphasic mixtures, whereby HAP was the dominant crystalline phase in the case of the sample with the higher Ca/P ratio (HAP1) while α-TCP was the dominant crystalline phase in the sample with lower Ca/P ratio (HAP2). The porous microstructures of the obtained bioceramics were characterized by spherical intra-agglomerate pores and shapeless inter-agglomerate pores. The fracture toughness of the HAP1 and HAP2 samples microwave sintered at 1200 °C for 15 min were 1.25 MPa m1/2. The phase composition of the obtained bioceramics only had a minor effect on the indentation fracture toughness compared to a unique microstructure consisting of spherical intra-agglomerate pores with strong bonds between the spherical agglomerates. Cold isostatic pressing at 400 MPa before microwave sintering led to an increase in the fracture toughness of the biphasic HAP/TCP bioceramics to 1.35 MPa m1/2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Hench LL (1991) J Am Ceram Soc 74:1487

    Article  CAS  Google Scholar 

  2. Chevalier J, Gremillard L (2009) J Eur Ceram Soc 29:1245

    Article  CAS  Google Scholar 

  3. Descamps M, Hornez JC, Leriche A (2009) J Eur Ceram Soc 29:369

    Article  CAS  Google Scholar 

  4. Le Geros RZ, Lin S, Rohanizadeh R, Mijares D, Le Geros JP (2003) J Mater Sci Mater Med 14:201

    Article  Google Scholar 

  5. Shors EC, Holmes RE (1993) In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore

    Google Scholar 

  6. Vani R, Girija EK, Elayaraja K, Parthiban SP, Kesavamoorthy R, Kalkura SN (2009) J Mater Sci Mater Med. doi: 10.1007/s10856-008-3480-8

  7. Kawata M, Uchida H, Itatani K, Okada I, Koda S, Aizawa M (2004) J Mater Sci Mater Med 15:817

    Article  CAS  PubMed  Google Scholar 

  8. Kumar R, Prakash KH, Cheang P, Khor KA (2005) Acta Mater 53:2327

    Article  CAS  Google Scholar 

  9. Barralet JE, Best S, Bonfield W (2000) J Mater Sci Mater Med 11:719

    Article  CAS  PubMed  Google Scholar 

  10. Landi E, Tampieri A, Celotti G, Sprio S (2000) J Eur Ceram Soc 20:2377

    Article  CAS  Google Scholar 

  11. Ribeiro CC, Barrias CC, Barbosa MA (2006) J Mater Sci Mater Med 17:455

    Article  CAS  PubMed  Google Scholar 

  12. Mayo MJ (1997) In: Chow GM, Noskova NI (eds) Nanostructured materials, materials science technology, NATO ASI Series. Kluwer Academic Publishers, Russia

    Google Scholar 

  13. Groza JR (1999) Nanostruct Mater 12:987

    Article  Google Scholar 

  14. Veljovic Dj, Jokic B, Jankovic-Castvan I, Smiciklas I, Petrovic R, Janackovic Dj (2007) Key Eng Mater 330–332:259

    Article  Google Scholar 

  15. Veljovic Dj, Jokic B, Petrovic R, Palcevskis E, Dindune A, Mihailescu IN, Janaćkovic Dj (2009) Ceram Int 35:1407

    Article  CAS  Google Scholar 

  16. Tang CY, Uskokovic PS, Tsui CP, Veljovic Dj, Petrovic R, Janackovic Dj (2009) Ceram Int 35:2171

    Article  CAS  Google Scholar 

  17. Wang XL, Fan HS, Xiao YM, Zhang XD (2006) Mater Lett 60:455

    Article  CAS  Google Scholar 

  18. Vijayan S, Varma H (2002) Mater Lett 56:827

    Article  CAS  Google Scholar 

  19. Fang Y, Agrawal DK, Roy DM, Roy R (1994) J Mater Res 9:180

    Article  CAS  ADS  Google Scholar 

  20. Sutton WH (1989) Am Ceram Soc Bull 68:376

    CAS  Google Scholar 

  21. Muralithran G, Ramesh S (2000) Ceram Int 26:221

    Article  CAS  Google Scholar 

  22. Rao RR, Roopa HN, Kanan TS (1997) J Mater Sci Mater Med 8:511

    Article  CAS  PubMed  Google Scholar 

  23. Aizava M, Hanazava T, Itatani K, Howell FS, Kishioka A (1999) J Mater Sci 34:2865. doi:10.1023/A:1004635418655

    Article  Google Scholar 

  24. Bose S, Saha SK (2003) J Am Ceram Soc 86:1055

    Article  CAS  Google Scholar 

  25. Jokic B, Tanaskovic D, Jankovic-Castvan I, Drmanic S, Petrovic R, Janackovic Dj (2007) J Mater Res 22:1156

    Article  CAS  ADS  Google Scholar 

  26. Janaćkovic Dj, Petrovic-Prelevic I, Kostic-Gvozdenovic Lj, Petrovic R, Jokanovic V, Uskovic D (2001) Key Eng Mater 203:192

    Google Scholar 

  27. Gross KA, Bhadang KA (2004) Biomaterials 25:1395

    Article  CAS  PubMed  Google Scholar 

  28. Gross KA, Rodríguez-Lorenzo LM (2004) Biomaterials 25:1385

    Article  CAS  PubMed  Google Scholar 

  29. Prokopiev O, Sevostianov I (2006) Mater Sci Eng A 431:218

    Article  Google Scholar 

  30. Fujishiro Y, Sato T, Okuwaki A (1995) J Mater Sci 6:172. doi:10.1007/BF00120295

    CAS  Google Scholar 

  31. Jokic B, Jankovic-Castvan I, Veljović Dj, Bucevac D, Obradovic-Djuricic K, Petrovic R, Janackovic Dj (2007) J Opt Adv Mater 9:1904

    CAS  Google Scholar 

  32. Evans AG, Charles EA (1976) J Am Ceram Soc 59:371

    Article  CAS  Google Scholar 

  33. Matijevic E (1998) J Eur Ceram Soc 18:1357

    Article  CAS  Google Scholar 

  34. Privman V, Goia D, Park J, Matijevic E (1999) J Colloid Interface Sci 213:36

    Article  CAS  PubMed  Google Scholar 

  35. Goia DV, Matijevic E (1999) Colloids Surf A Physicochem Eng Asp 146:139

    Article  CAS  Google Scholar 

  36. Park J, Privman V, Matijevic E (2001) J Phys Chem B 105:11630

    Article  CAS  Google Scholar 

  37. Libert S, Gorshov V, Privman V, Gioa D, Matijevic E (2003) Adv Colloid Interface Sci 100–102:169

    Article  Google Scholar 

  38. Sondi I, Matijevic E (2003) Chem Mater 15:1322

    Article  CAS  Google Scholar 

  39. Thangamania N, Chinnakalib K, Gnanama FD (2002) Ceram Int 28:355

    Article  Google Scholar 

  40. Lawn BR, Jensen T, Arora A (1976) J Mater Sci Lett 11:573

    ADS  Google Scholar 

  41. Chiang YM, Birnie DP, Kingery WD (1997) Physical ceramics. Wiley, New York

    Google Scholar 

  42. Lawn BR, Marshall DB (1979) J Am Ceram Soc 62:347

    Article  CAS  Google Scholar 

  43. Landuyt PV, Li F, Keustermans JP, Streydio JM, Delannay F, Munting E (1995) J Mater Sci Mater Med 6:8

    Article  Google Scholar 

  44. Callister WD (2003) Materials science and engineering: an introduction. Wiley, New York

    Google Scholar 

  45. Tancret F, Bouler JM, Chamousset J, Minois LM (2006) J Eur Ceram Soc 26:3647

    Article  CAS  Google Scholar 

  46. Banerjee A, Bandyopadhyay A, Bose S (2007) Mater Sci Eng C 27:729

    Article  CAS  Google Scholar 

  47. Raynaud S, Champion E, Lafon JP, Bernache-Assollant D (2002) Biomaterials 23:1081

    Article  CAS  PubMed  Google Scholar 

  48. Raynaud S, Champion E, Bernache-Assollant D (2002) Biomaterials 23:1073

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support from the Ministry of Science and Technological Development of the Republic of Serbia through projects 142070B and EUREKA E! 3033 Bionanocomposit. The Latvian authors also acknowledge the support of the Ministry of Education and Science of the Republic of Latvia under the EUREKA E! 3033 Bionanocomposit project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dj. Veljović.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Veljović, D., Palcevskis, E., Dindune, A. et al. Microwave sintering improves the mechanical properties of biphasic calcium phosphates from hydroxyapatite microspheres produced from hydrothermal processing. J Mater Sci 45, 3175–3183 (2010). https://doi.org/10.1007/s10853-010-4324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4324-8

Keywords

  • Fracture Toughness
  • Biphasic Calcium Phosphate
  • Green Compact
  • Microwave Sinter
  • Calcium Hydroxyapatite