Skip to main content

The effect of Ca on the in vitro corrosion performance of biodegradable Mg–Nd–Y–Zr alloy

Abstract

The effect of 0.4% Ca on the in vitro corrosion behavior of Mg–1.2% Nd–0.5% Y–0.5% Zr was evaluated in a simulated physiological environment in the form of 0.9% NaCl solution saturated with Mg(OH)2 at ambient temperature and at 37 °C. The microstructure examination was carried out using optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion test, salt spray testing, and potentiodynamic polarization analysis. The stress corrosion behavior was examined using slow strain rate testing analysis in different strain rates. The results obtained have shown that the addition of 0.4% Ca has a beneficial effect on the corrosion resistance of the tested alloy. This was mainly attributed to the effect of calcium, which reduces oxidation in the molten condition and consequently improves the soundness of the obtained casting. Hence, it is believed that the reduction in the extent of inherent casting defects in the alloy containing calcium overcomes the detrimental micro-galvanic effect of the Mg2Ca phase that was formed in the tested alloy. Contrary to the beneficial effect of calcium on the corrosion performance, the addition of calcium has a damaging effect on the stress corrosion behavior in terms of reduced ultimate tensile strength and ductility. This was mainly due to the embrittlement effect of calcium that was generated by the formation and distribution of Mg2Ca phase at grain boundaries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Aghion E, Arnon A, Atar D, Segal G (2007) US Patent No. PCT/IL 2007/000520

  2. Brar HS, Platt MO, Sarntinoranont M, Martin PI, Manuel MV (2009) JOM 61:31

    Article  CAS  Google Scholar 

  3. Gu X, Zheng Y, Cheng Y, Zhong S, Xi T (2009) Biomaterials 30:484

    Article  CAS  PubMed  Google Scholar 

  4. Muller WD, Nascimento ML, Zeddies M, Corsico M, Gassa LM, Lorenzo de Mele MA (2007) Mater Res 10:5

    Google Scholar 

  5. Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Windhagen H (2006) Biomaterials 27:1013

    Article  CAS  PubMed  Google Scholar 

  6. Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A (2003) Heart 89:651

    Article  CAS  PubMed  Google Scholar 

  7. Song G, Song S (2007) Adv Eng Mater 9:298

    Article  CAS  Google Scholar 

  8. Williams D (2006) Med Dev 17:9

    Google Scholar 

  9. Erinc M, Sillekens WH, Mannens R, Werkhoven RJ (2009) In: Nyberg EA, Agnew SR, Neelameggham NR, Pekguleryuz MO (eds) Magnesium technology 2009. TMS 2009, Annual meeting & exhibition, San Francisco, California, USA, 15–19 February 2009

  10. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Biomaterials 27:1728

    Article  CAS  PubMed  Google Scholar 

  11. Song G (2007) Corros Sci 49:1696

    Article  CAS  Google Scholar 

  12. Aghion E, Gueta Y, Moscovitch N, Bronfin B (2008) J Mater Sci 43:4870. doi:10.1007/s10853-008-2708-9

    Article  CAS  ADS  Google Scholar 

  13. Liu N, Wang J, Wa Y, Wang L (2008) J Mater Sci 43:2550. doi:10.1007/s10853-008-2447-y

    Article  CAS  ADS  Google Scholar 

  14. Kannan MB, Singh Raman RK (2008) Biomaterials 29:2306

    Article  CAS  PubMed  Google Scholar 

  15. Wan Y, Xiong G, Luo H, He F, Huang Y, Zhou X (2008) Mater Des 29:2034

    CAS  Google Scholar 

  16. Zhang E, Yang L (2008) Mater Sci Eng A 497:111

    Article  Google Scholar 

  17. Li Z, Gu X, Lou S, Zheng Y (2008) Biomaterials 29:1329

    Article  CAS  PubMed  Google Scholar 

  18. Stroganov GB, Savitski EM, Tikhov NM, Terekhova VF, Volkov MV, Sivash KM, Borodkin VS (1972) US Patent No. 3687135

  19. Quach NC, Uggowitzer PJ, Schmutz P (2008) Chimie 11:1043

    CAS  Google Scholar 

  20. Song G, Atrens A (2003) Adv Eng Mater 5:837

    Article  CAS  Google Scholar 

  21. Aghion E, Lulu N (2009) J Mater Sci 44:4279. doi:10.1007/s10853-009-3634-1

    Article  CAS  ADS  Google Scholar 

  22. Kim WC, Kim JG, Lee JY, Seok HK (2008) Mater Lett 62:4146

    Article  CAS  Google Scholar 

  23. Avedesian MM, Baker H (1999) Magnesium and magnesium alloys (ASM specialty handbook). ASM International, Materials Park, OH

    Google Scholar 

  24. Ghali E, Dietzelw W, Kainer KU (2004) J Mater Eng Perform 13(1):7

    Article  CAS  Google Scholar 

  25. Arnon A, Aghion E (2008) Adv Eng Mater 10:742

    Article  CAS  Google Scholar 

  26. Song RG, Blawert C, Dietzel W, Atrens A (2005) Mater Sci Eng A 399:308

    Article  Google Scholar 

  27. Kannan MB, Dietzel W, Singh Raman RK, Lyon P (2007) Scr Mater 57:579

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Meital Hillel from Ben-Gurion University for her assistance in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Aghion.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aghion, E., Levy, G. The effect of Ca on the in vitro corrosion performance of biodegradable Mg–Nd–Y–Zr alloy. J Mater Sci 45, 3096–3101 (2010). https://doi.org/10.1007/s10853-010-4317-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4317-7

Keywords

  • Corrosion Resistance
  • Magnesium Alloy
  • Ultimate Tensile Strength
  • Simulated Body Fluid
  • Corrosion Performance