Skip to main content
Log in

Essential work of fracture testing of PC-rich PET/PC blends with and without transesterification catalysts

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

0.7 mm sheets of blends of polycarbonate (PC) with polyethylene terephthalate (PET) rich in PC in the presence and absence of three different transesterification catalysts have been obtained using reactive extrusion-calendering processing method in order to evaluate the fracture toughness of these materials applying the essential work of fracture (EWF) approach which has not been previously reported in the literature. The morphology has been characterized by scanning electron microscopy (SEM). In addition, the tensile properties of these materials were determined. There is a decrease on the essential term (w e) values of PC/PET blends without transesterification catalysts while blends with transesterification catalysts present an increment in comparison with neat PC which may related to the product of the transesterification that plays like an emulsifier/compatibilizing agent to reduce the interfacial tension between the components of the blend and reduce the interfacial tension between the two immiscible or incompatible component phases to get a better fracture behavior. This is confirmed by the tensile test results obtained which demonstrate higher values for E and σ y in the case of blends with transesterification catalysts compared with neat PC. For non-essential term of fracture (βw p), blends without catalysts exhibit an increase compared with neat PC by increasing the amount of PET which may due to the lowering of the yielding stress. In contrary, the presence of transesterification catalysts and especially Zn-based shows decrease as a consequence of the restriction that occurred on the movement of PC segments during the transesterification reactions or as a decohesion of the dispersed phase during the test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nadkarni VM, Rath AK (2002) Handbook of thermoplastic polyesters: homopolymers, copolymers, blends, and composites. Wiley-VCH Verlag GmbH, Germany

    Google Scholar 

  2. Pilati F, Marianucci E, Berti C (1985) J Appl Polym Sci 30:1267

    Article  CAS  Google Scholar 

  3. Nassar TR, Paul DR, Barlow JW (1979) J Appl Polym Sci 23:85

    Article  CAS  Google Scholar 

  4. Linder M, Henrichs PM, Hewitt JM, Massa DJ (1985) J Chem Phys 82:1585

    Article  CAS  ADS  Google Scholar 

  5. Makarewics PJ, Wilkes GL (1979) J Appl Polym Sci 23:1619

    Article  Google Scholar 

  6. Abis A, Braglia R, Camurati I, Merlo E, Natarajan KM, Elwood D, Mylonakis SG (1994) J Appl Polym Sci 52:1431

    Article  CAS  Google Scholar 

  7. Suzuki T, Tanaka H, Nishi T (1989) Polymer 30:1287

    Article  CAS  Google Scholar 

  8. Fakirov S (1999) Transreactions in condensation polymers. Wiley-VCH Verlag GmbH, Germany

    Book  Google Scholar 

  9. Zhang GY, Ma JW, Cui BX, Luo XL, Ma DZ (2001) Macromol Chem Phys 202:604

    Article  CAS  Google Scholar 

  10. Murff SR, Barlow JW, Paul DR (1984) J Appl Polym Sci 29:3231

    Article  CAS  Google Scholar 

  11. Ignatov VN, Carraro C, Tartari V, Pippa R, Scapin M, Pilati F, Berti C, Toselli M, Fiorini M (1996) Polymer 37:5883

    Article  CAS  Google Scholar 

  12. Marchese P, Celli A, Fiorini M (2002) Macromol Chem Phys 203:695

    Article  CAS  Google Scholar 

  13. Garcia M, Eguiazabal JI, Nazabal J (2001) J Appl Polym Sci 81:121

    Article  CAS  Google Scholar 

  14. Fraisse F, Verney V, Commereuc S, Obadal M (2005) Polym Degrad Stab 90:250

    Article  CAS  Google Scholar 

  15. Maspoch MLI, Henault V, Ferrer-Balas D, Velasco JI, Santana OO (2000) Polym Test 19:559

    Article  CAS  Google Scholar 

  16. Hashemi S (1997) Polym Eng Sci 37:912

    Article  CAS  Google Scholar 

  17. Karger-Kocsis J, Czigány T (1996) Polymer 37:2433

    Article  CAS  Google Scholar 

  18. Mai YW, Cotterell B, Horlyck R, Vigna G (1987) Polym Eng Sci 27:804

    Article  CAS  Google Scholar 

  19. Al-Jabareen A (2009) Poly(ethylene terephthalate)/polycarbonate blends prepared by reactive extrusion: thermal and mechanical characterization. Universitat Polytecnica de Catalunya, Barcelona, Spain

  20. Mai YW, Cotterell B (1986) Int J Fract 32:105

    Article  CAS  Google Scholar 

  21. Broberg KB (1968) Int J Fract 4:11

    Article  Google Scholar 

  22. Karger-Kocsis J, Czigány T, Moskala EJ (1997) Polymer 38:4587

    Article  CAS  Google Scholar 

  23. Clutton EQ (2000) In: Williams JG, Pavan A (eds) ESIS TC4 experience with the essential work of fracture method. European Structural Integrity Society, Elsevier Science Ltd, Oxford

    Google Scholar 

  24. Maspoch MLl, Gámez-Pérez J, Gordillo A, Sánchez-Soto M, Velasco JI (2002) Polymer 43:4177

    Article  CAS  Google Scholar 

  25. Sánchez JJ (2003) Comportamiento térmico y mecánico del poli(etilén tereftalato) (PET) modificado con resinas poliméricas basadas en bisfenol-A. Uinversitat Polytecnica de Catalunya, Barcelona, Spain

    Google Scholar 

  26. Li Z-M, Yang W (2004) Macromol Mater Eng 289:426

    Article  CAS  Google Scholar 

  27. Moore DR, Pavan A, Williams JG (2001) Fracture mechanics testing methods for polymers, adhesives and composites. ESIS Publication 28, Elsevier Science Ltd, Amsterdam, Holland

    Google Scholar 

  28. Karger-Kocsis J, Moskala EJ, Shang PP (2001) J Therm Anal Calorim 63:671

    Article  CAS  Google Scholar 

  29. Chan WYF, Williams JG (1994) Polymer 35:1666

    Article  CAS  Google Scholar 

  30. Paton CA, Hashemi S (1992) J Mater Sci 27:2279. doi:10.1007/BF01105033

    Article  CAS  ADS  Google Scholar 

  31. Hashemi S (1993) J Mater Sci 28:6178. doi:10.1007/BF00365040

    Article  CAS  ADS  Google Scholar 

  32. Hashemi S (2000) J Mater Sci 35:5851. doi:10.1023/A:1026704323702

    Article  CAS  Google Scholar 

  33. Yuan YL, Wu CML, Li RKY (2007) Polym Test 26:102

    Article  CAS  Google Scholar 

  34. Sikka M, Pellagrini NN, Schmitt EA, Winey KZ (1997) Macromolecules 30:445

    Article  CAS  ADS  Google Scholar 

  35. Kulasekere R, Kaiser H, Ankner JF, Russell TP, Brown HR, Hawker CJ, Mayes AM (1996) Macromolecules 29:5493

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to Ministerio de Asuntos Exteriores y de Cooperación – Agencia Española de Cooperación Internacional (AECI) for the funding of a doctoral research scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Al-Jabareen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Jabareen, A., Illescas, S., Maspoch, M.L. et al. Essential work of fracture testing of PC-rich PET/PC blends with and without transesterification catalysts. J Mater Sci 45, 2907–2915 (2010). https://doi.org/10.1007/s10853-010-4282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4282-1

Keywords

Navigation