Skip to main content
Log in

Supramolecular host–guest systems constructed of pyrrole derivatives and 3D-coordination polymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pyrrole derivatives have been shown to be completely or partially oxidized within the expandable channels of the 3D-coordination polymers [(R3Sn)3Fe(CN)6] n and [(R3Sn)(R 3 Sn)2Fe(CN)6] n , R and R′ = Me, n-Bu, or Ph, to give novel class of supramolecular host–guest systems. The structures and physical properties of these host–guest systems depend on the reaction time, nature of the host and guest, the space empty within the network of the 3D-coordination polymers. Pyrrole undergoes oxidative polymerization in the channels of the 3D-coordination polymers to form semiconducting diamagnetic supramolecular host–guest systems. Whereas N-methylpyrrole and 2,5-dimethylpyrrole are not polymerized under these experimental conditions, but give paramagnetic charge transfer (CT) supramolecular host–guest systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Steed JW, Atwood JL (2009) Supramolecular chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  2. Yünlü K, Höck N, Fischer RD (1985) Angew Chem Int Ed Engl 24:879

    Article  Google Scholar 

  3. Bonardi A, Carini C, Pelizzi C, Predieri G, Tarasconi P, Zoroddu MA, Molloy KC (1991) J Organometal Chem 401:283

    Article  CAS  Google Scholar 

  4. Behrens U, Brimah AK, Soliman TM, Fischer RD, Apperley DC, Davies NA, Harris RK (1992) Organometallics 11:1718

    Article  CAS  Google Scholar 

  5. Soliman TM, Etaiw SEH, Fendesak G, Fischer RD (1991) J Organomet Chem 415:C5

    Article  Google Scholar 

  6. Niu T, Lu J, Wang X, Krop JD, Jacobson AJ (1998) Inorg Chem 37:5324

    Article  CAS  Google Scholar 

  7. Niu T, Jacobson AJ (1999) Inorg Chem 38:5346

    Article  CAS  Google Scholar 

  8. Eller S, Schwarz P, Brimah AK, Fischer RD (1993) Organometallics 12:3232

    Article  CAS  Google Scholar 

  9. Ibrahim AMA, Etaiw SEH, Soliman TM (1992) J Organomet Chem 430:87

    Article  CAS  Google Scholar 

  10. Hassanein M, Etaiw SEH (1993) Eur Polym J 29:47

    Article  CAS  Google Scholar 

  11. Ibrahim MSh (2000) Transition Met Chem 25:695

    Article  CAS  Google Scholar 

  12. Brandt P, Brimah AK, Fischer RD (1988) Angew Chem Int Ed Engl 27:1521

    Article  Google Scholar 

  13. Etaiw SEH, Ibrahim AMA (1993) J Organomet Chem 456:229

    Article  CAS  Google Scholar 

  14. Ibrahim AMA, Soliman TM, Etaiw SEH, Fischer RD (1994) J Organomet Chem 468:93 (and references therein)

    Article  CAS  Google Scholar 

  15. Ibrahim MSh, Werida AH, Etaiw SEH (2003) Transition Met Chem 28:585

    Article  CAS  Google Scholar 

  16. Ibrahim MSh, Werida AH, Etaiw SEH (2004) Phosphorus Sulfur Silicon 179:2441

    Article  CAS  Google Scholar 

  17. Lu J, Harrison WTA, Jacobson AJ (1996) Inorgan Chem 35:4271

    Article  CAS  Google Scholar 

  18. Ibrahim AMA (1999) Polyhedron 18:2711 (and references therein)

    Article  CAS  Google Scholar 

  19. Osaka T, Momma M, Kanagwa H (1993) Chem Lett 22(4):649

    Article  Google Scholar 

  20. Schmidtke HH, Evring G (1974) Z Physik Chem Neue Folge 925:211 (and references therein)

    Google Scholar 

  21. Gale R, McCaffery AJ (1973) J Chem Soc 13:1344

    Google Scholar 

  22. Monkman AP, Bloor D, Stevens GC, Stevens JCH (1987) J Phys D Appl Phys 20:1337

    Article  ADS  CAS  Google Scholar 

  23. Rehbein M, Fischer RD, Epple M (2002) Thermochimica Acta 382:143

    Article  CAS  Google Scholar 

  24. Nishida Y, Oshio S, Kida S (1977) Inorg Chim Acta 23:59

    Article  CAS  Google Scholar 

  25. Beardwood P, Gibson FJ (1983) J Chem Soc Dalton Trans 4:737

    Article  Google Scholar 

  26. Tourillon G, Garnier F (1982) J Electroanal Chem 135:173

    Article  CAS  Google Scholar 

  27. Rapi S, Bocchi V, Gardini GP (1988) Synth Met 24:217

    Article  CAS  Google Scholar 

  28. Salmon M, Diaz AF, Logan AJ, Krounbi M, Bargon J (1982) Mol Cryst Liq Cryst 83:265

    Article  Google Scholar 

  29. Dong S, Ding J (1987) Synth Met 20:119

    Article  CAS  Google Scholar 

  30. Etaiw SEH, Ibrahim AMA (1994) Thermochim Acta 233:297

    Article  CAS  Google Scholar 

  31. Wei Y, Chan CC, Tian J, Jang GW, Hsueh KF (1991) Chem Mater 3:888

    Article  CAS  Google Scholar 

  32. Kellogg RM (1984) In: Kartizky AR Rees CW (eds) Comprehensive heterocyclic chemistry, part 3, vol 4. Pergamon Press, Oxford, p 713

  33. Diaz AF (1981) Chem Scr 17:145

    CAS  Google Scholar 

  34. Bidan G, Deronzier A, Moutet JC (1984) Nouv J Chim 8:501

    CAS  Google Scholar 

  35. Bidan G, Deronzier A, Moutet JC (1984) JCS Chem Commun 1185

  36. Bidan G, Gugliemi M (1986) Synth Met 15:49

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safaa Eldin H. Etaiw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etaiw, S.E.H., Ibrahim, M.S. & Abd El-Aziz, D.M. Supramolecular host–guest systems constructed of pyrrole derivatives and 3D-coordination polymers. J Mater Sci 45, 2474–2483 (2010). https://doi.org/10.1007/s10853-010-4219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4219-8

Keywords

Navigation