Skip to main content
Log in

Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide

  • ICAM 2009
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

PAAm–MC hydrogels as a potential delivery vehicle for the controlled release of paraquat pesticide was investigated, as they play an essential role to use hydrogels in controlled release technology. The release kinetics of paraquat was determined using UV–Vis measurements. The release mechanism of paraquat from PAAm–MC hydrogels was investigated through a semi-empirical model proposed by Ritger and Peppas. In general, the initial rate of paraquat release was fast, decreasing after several days, hence indicating that paraquat on the surface (or close to) of hydrogels diffused rapidly after the initial swelling of the gel. Later, the cumulative release occurred in a very controlled and sustained manner, with the paraquat concentration maintaining constant from 15 to 46 days. The paraquat release capacity was dependent on the swelling of the matrix and the density of the network chains. The curves obtained from Peppas’s model presented good linearity (R 2 ≥ 0.999), indicating that such model can be applicable to analyze the systems. The n values for the pesticide release from hydrogels indicate that paraquat release has Fickian and non-Fickian diffusion, depending of hydrogel formulation. The values of k showed that the release of paraquat becomes slower when the MC and AAm concentration increases. Finally, to the best of our knowledge, we report a hydrogel-based vehicle (first carrier) that is able to prolong the sustained release of paraquat pesticide up to 45 days, which is essential for its application in controlled release systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

π:

Osmotic pressure defined by Donnan equilibrium theory

μ :

Chemical potential

AAm:

Acrylamide

Abs:

Absorbance

C :

Mobile ion concentration

C R :

Cumulative release

G :

Gibb’s free energy

k :

Constant incorporating structural and geometric characteristics of the macromolecular polymeric system and the pesticide

M :

Amount of paraquat loaded onto the hydrogel

MBAAm:

N,N′-methylene-bis-acrylamide

MC:

Methylcellulose

M t :

Cumulative amount of paraquat released at time “t”

n :

Release exponent representing the release mechanism

P :

Pressure

PAAm:

Polyacrylamide

q eq :

Maximum paraquat adsorption

R :

Universal gas constant

R 2 :

Linear regression coefficient

SD:

Standard deviation

SEM:

Scanning electron microscopy

T :

Absolute temperature

TEMED:

N,N,N′,N′-tetramethylethylene-diamine

UV–Vis:

Ultraviolet–visible

V :

Volume

wt%:

Weight percent or mass percent

References

  1. Işıklan N (2007) J Appl Polym Sci 105:718

    Article  CAS  Google Scholar 

  2. Lee WF, Lin YH (2006) J Mater Sci 41:7333. doi:10.1007/s10853-006-0882-1

    Article  ADS  CAS  Google Scholar 

  3. Babu VR, Krishna Rao KSV, Sairam M, Naidu BVK, Hosamani KM, Aminabhavi TM (2006) J Appl Polym Sci 99:2671

    Article  CAS  Google Scholar 

  4. Kopeček J (2007) Biomaterials 28:5185

    Article  PubMed  CAS  Google Scholar 

  5. Lu P, Hsieh YL (2009) Polymer 50:3670

    Article  CAS  Google Scholar 

  6. Bassil M, Davenas J, El Tahchi M (2008) Sensor Actuators B 134:496

    Article  CAS  Google Scholar 

  7. Santipanichwong R, Suphantharika M, Weiss J, McClements DJ (2008) Food Res Int 41:237

    Article  CAS  Google Scholar 

  8. Fujimoto KL, Ma Z, Nelson DM, Hashizume R, Guan J, Tobita K, Wagner WR (2009) Biomaterials 30:4357

    Article  PubMed  CAS  Google Scholar 

  9. Zhang L, Rakotondradany F, Myles AJ, Fenniri H, Webster TJ (2009) Biomaterials 30:1309

    Article  PubMed  CAS  Google Scholar 

  10. Ta HT, Han H, Larson I, Dass CR, Dunstan DE (2009) Int J Pharm 371:134

    Article  PubMed  CAS  Google Scholar 

  11. Song F, Zhang LM, Yang C, Yan L (2009) Int J Pharm 373:41

    Article  PubMed  CAS  Google Scholar 

  12. Han J, He Y, Xiao M, Ma G, Nie J (2009) Polym Adv Technol 20:607

    Article  CAS  Google Scholar 

  13. Wang HF, Wang ZH, Zhu BM (2007) React Funct Polym 67:225

    Article  CAS  Google Scholar 

  14. Rudzinski WE, Dave AM, Vaishnav UH, Kumbar SG, Kulkarni AR, Aminabhavi TM (2002) Des Monomers Polym 5:39

    Article  CAS  Google Scholar 

  15. Bajpai AK, Giri A (2003) Carbohydr Polym 53:271

    Article  CAS  Google Scholar 

  16. Aouada FA, Pan Z, Orts WJ, Mattoso LHC (2009) J Appl Polym Sci 114:2139

    Article  CAS  Google Scholar 

  17. Han J, Wang K, Yang D, Nie J (2009) Int J Biol Macromol 44:229

    Article  PubMed  CAS  Google Scholar 

  18. de Moura MR, Aouada FA, Favaro SL, Radovanovic E, Rubira AF, Muniz EC (2009) Mater Sci Eng C 29:2139

    Google Scholar 

  19. Ritger PL, Peppas NA (1987) J Control Release 5:23

    Article  CAS  Google Scholar 

  20. Ritger PL, Peppas NA (1987) J Control Release 5:37

    Article  CAS  Google Scholar 

  21. Andreopoulos AG, Tarantili PA (2001) J Biomater Appl 16:34

    Article  PubMed  CAS  Google Scholar 

  22. Singh B, Sharma DK, Gupta A (2008) J Hazard Mater 154:278

    Article  PubMed  CAS  Google Scholar 

  23. Shang L, Zhang S, Du H, Venkatraman SS (2008) J Membr Sci 321:331

    Article  CAS  Google Scholar 

  24. Liang R, Yuan H, Xi G, Zhou Q (2009) Carbohydr Polym 77:181

    Article  CAS  Google Scholar 

  25. Kök FN, Arıca MY, Gencer O, Abak K, Hasırcı V (1999) Pest Sci 55:1194

    Article  Google Scholar 

  26. Abd El-Rehim HA, Hegazy EA, Abd El-Mohdy HL (2005) J Appl Polym Sci 98:1262

    Article  CAS  Google Scholar 

  27. Canal T, Peppas NA (1989) J Biomed Mater Res A 23:1183

    Article  CAS  Google Scholar 

  28. Hamidi M, Azadi A, Rafiei P (2008) Adv Drug Deliv Rev 60:1638

    Article  PubMed  CAS  Google Scholar 

  29. Wu M, Zhang XG, Zheng C, Li CX, Zhang SM, Dong RN, Yu DM (2009) Eur J Pharm Sci 37:198

    Article  PubMed  CAS  Google Scholar 

  30. Rokhade AP, Shelke NB, Patil SA, Aminabhavi TM (2007) Carbohydr Polym 69:678

    Article  CAS  Google Scholar 

  31. Graiver D, Hyon SH, Ikada Y (1995) J Appl Polym Sci 57:1299

    Article  CAS  Google Scholar 

  32. Alemzadeh I, Vossoughi M (2002) Chem Eng Process 41:707

    Article  CAS  Google Scholar 

  33. Singh B, Sharma DK, Kumar R, Gupta A (2009) Appl Clay Sci 45:76

    Article  CAS  Google Scholar 

  34. Siyam T (1994) Macromol Rep A31:371

    CAS  Google Scholar 

  35. Kenawy E (1998) React Funct Polym 36:31

    Article  CAS  Google Scholar 

  36. Lin CC, Metters AT (2006) Adv Drug Deliv Rev 58:1379

    Article  PubMed  CAS  Google Scholar 

  37. Amsden B (1998) Macromolecules 31:8382

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to USDA/ARS/WRRC, FAPESP, CNPq, Embrapa (Labex Program and MP1 Project), and FINEP/LNNA for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fauze A. Aouada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aouada, F.A., de Moura, M.R., Orts, W.J. et al. Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. J Mater Sci 45, 4977–4985 (2010). https://doi.org/10.1007/s10853-009-4180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4180-6

Keywords

Navigation