Skip to main content
Log in

Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic processes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Due to its strong absorption to visible light and intrinsic polarizability, β-Bi2O3 could be a promising candidate for the visible-light-activated photocatalysis. However, its structural instability during a photocatalytic process prevents it from being used practically. In this work, titanium-doped β-Bi2O3 was synthesized by a hydrothermal method with subsequent calcination under 400 °C. Its crystal structure, photophysical property, and structural stability were investigated by using powder X-ray diffraction, Raman, infrared and diffuse reflectance UV–vis spectroscopies. The crystal structure of the titanium-doped β-Bi2O3 is analogous to β-Bi2O3. These two oxides exhibited comparable photocatalytic activities on the photodegradation of indigo carmine, rhodamine B, and methylene blue under visible-light irradiation. However, unlike β-Bi2O3, the titanium-doped β-Bi2O3 was quite stable during these photocatalytic reactions. The improvement in structural stability was attributable to the substitution of titanium species in the host crystal lattice. The current investigation results point toward the possibility of metal ion-doped bismuth oxides as efficient visible-light-activated photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Nature 238:37

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Yamashita H, Anpo M (2004) Catal Surv Asia 8:35

    Article  CAS  Google Scholar 

  3. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69

    Article  CAS  Google Scholar 

  4. Chen X, Mao SS (2007) Chem Rev 107:2891

    Article  CAS  PubMed  Google Scholar 

  5. Luan J-F, Hao X-P, Zheng S-R, Luan G-Y, Wu X-S (2006) J Mater Sci 41:8001. doi:10.1007/s10853-006-0869-y

    Article  CAS  ADS  Google Scholar 

  6. Wang D, Kako T, Ye J (2008) J Am Chem Soc 130:2724

    Article  CAS  PubMed  Google Scholar 

  7. Wang P, Huang B, Qin X, Zhang X, Dai Y, Wei J, Whangbo MH (2008) Angew Chem Int Ed 47:1

    Article  CAS  Google Scholar 

  8. Inoue Y (2006) In: Fierro JLG (ed) Metal oxides chemistry and applications. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  9. Kim HG, Hwang DW, Lee JS (2004) J Am Chem Soc 126:8912

    Article  CAS  PubMed  Google Scholar 

  10. Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 95:735

    Article  CAS  Google Scholar 

  11. Shan Z, Wu J, Xu F, Huang FQ, Ding HM (2008) J Phys Chem C 112:15423

    Article  CAS  Google Scholar 

  12. Peter LM, Wijayantha KGU, Riley DJ, Waggett JP (2003) J Phys Chem B 107:8378

    Article  CAS  Google Scholar 

  13. Vinodgopal K, Kamat PV (1995) Sol Energy Mater Sol Cells 38:401

    Article  CAS  Google Scholar 

  14. Tang J, Zou Z, Ye J (2007) J Phys Chem C 111:12779

    Article  CAS  Google Scholar 

  15. Dolocan FI V (1981) Phys Status Solidi A 64:755

    Article  Google Scholar 

  16. Leontie L, Caraman M, Delibas M, Rusu GI (2001) Mater Res Bull 36:1629

    Article  CAS  Google Scholar 

  17. Walsh A, Watson GW, Payne DJ, Edgell RG, Guo J, Glans P-A, Learmonth T, Smith KE (2006) Phys Rev B: Condens Matter Mater Phys 73:235104

    ADS  Google Scholar 

  18. Lin X, Huang F, Wang W, Shi J (2007) Scr Mater 56:189

    Article  CAS  Google Scholar 

  19. Medernach JW, Snyder RL (1978) J Am Ceram Soc 61:494

    Article  CAS  Google Scholar 

  20. Shuk P, Wiemhöfer H-D, Guth U, Göpel W, Greenblatt M (1996) Solid State Ionics 89:179

    Article  CAS  Google Scholar 

  21. Drache M, Roussel P, Wignacourt J-P (2007) Chem Rev 107:80

    Article  CAS  PubMed  Google Scholar 

  22. Gurunathan K (2004) Int J Hydrogen Energy 29:933

    Article  CAS  Google Scholar 

  23. Bessekhouad Y, Robert D, Weber JV (2005) Catal Today 101:315

    Article  CAS  Google Scholar 

  24. Zhang L, Wang W, Yang J, Chen Z, Zhang W, Zhou L, Liu S (2006) Appl Catal A 308:105

    Article  CAS  Google Scholar 

  25. Hameed A, Montini T, Gombac V, Fornasiero P (2008) J Am Chem Soc 130:9658

    Article  CAS  PubMed  Google Scholar 

  26. Xie J, Xiaomeng L, Chen M, Zhao G, Song Y, Lu S (2008) Dyes Pigm 77:43

    Article  CAS  Google Scholar 

  27. Eberl J (2008) Visible light photo-oxidations in the presence of bismuth oxides. Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

  28. Eberl J, Kisch H (2008) Photochem Photobiol Sci 7:1400

    Article  CAS  PubMed  Google Scholar 

  29. Zhou L, Wang W, Xu H, Sun S, Shang M (2009) Chem Eur J 15:1776

    Article  CAS  Google Scholar 

  30. Chai SY, Kim YJ, Jung MH, Chakraborty AK, Jung D, Lee WI (2009) J Catal 262:144

    Article  CAS  Google Scholar 

  31. Hardcastle FD, Wachs IE (1992) J Solid State Chem 97:319

    Article  CAS  ADS  Google Scholar 

  32. Kharton VV, Naumovich EN, Yaremchenko AA, Marques FMB (2001) J Solid State Electrochem 5:160

    Article  CAS  Google Scholar 

  33. Blower SK, Greaves C (1988) Acta Crystallogr C 44:587

    Article  Google Scholar 

  34. Depero LE, Sangaletti L (1996) J Solid State Chem 122:439

    Article  CAS  ADS  Google Scholar 

  35. Wada N, Morinaga K (1998) J Ceram Soc Jpn 106:576

    CAS  Google Scholar 

  36. Yao WF, Xu XH, Wang H, Zhou JT, Yang XN, Zhang Y, Shang SX, Huang BB (2004) Appl Catal B 52:109

    Article  CAS  Google Scholar 

  37. Zhou J, Zou Z, Ray AK, Zhao XS (2007) Ind Eng Chem Res 46:745

    Article  CAS  Google Scholar 

  38. Hazra S, Ghosh A (1995) Phys Rev B 51:851

    Article  CAS  ADS  Google Scholar 

  39. Davydov AA (2003) Molecular spectroscopy of oxide catalyst surfaces. Wiley, Chichester, England

    Book  Google Scholar 

  40. Barreca D, Morazzoni F, Rizzi GA, Scotti R, Tondello E (2001) Phys Chem Chem Phys 3:1743

    Article  CAS  Google Scholar 

  41. Butler MA (1977) J Appl Phys 48:1914

    Article  CAS  ADS  Google Scholar 

  42. Dolocan V (1978) Appl Phys A 16:405

    CAS  Google Scholar 

  43. Evarestov RA, Shapovalov VO, Veryazov VA (1994) Phys Status Solidi B 183:K15

    Article  CAS  Google Scholar 

  44. O’Regan B, Gratzel M (1991) Nature 353:737

    Article  ADS  Google Scholar 

  45. Hubbard CR, Snyder RL (1988) Powder Diffr 3:74

    CAS  Google Scholar 

  46. Greaves C, Blower SK (1988) Mater Res Bull 23:1001

    Article  CAS  Google Scholar 

  47. Taylor P, Sunder S, Lopata VJ (1984) Can J Chem 62:2863

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the key project of Shanghai Science and Technology Committee (No. 06DZ05025 and 08JC1408600), P. R. China. The anonymous reviewer was appreciated for his/her helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanming Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wen, Y., Ding, H. et al. Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic processes. J Mater Sci 45, 1385–1392 (2010). https://doi.org/10.1007/s10853-009-4096-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4096-1

Keywords

Navigation