Skip to main content
Log in

Isothermal crystallization kinetics of poly(vinylidene fluoride) in the α-phase in the scope of the Avrami equation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Isothermal melt crystallization of poly(vinylidene fluoride) (PVDF) at different crystallization temperatures was studied by differential scanning calorimetry. Analysis by the two different approaches of the Avrami equation was performed: first the classical double logarithmic approximation was used, but a non-linear least squares search showed to clearly improve the fit of the model to the experimental isotherms. The differences found by both methods in the Avrami parameters are discussed. The limitation of the Avrami equation in this polymer has to do not only with the fitting procedure to determine the parameters but also with the lack of a consistent physical interpretation of their temperature evolution. The melting behavior of the samples was analyzed and an equilibrium melting temperature of 190.9 °C was obtained by the Hoffmann–Weeks extrapolation. The samples crystallize in a spherulitic structure, as observed by optical microscopy with polarized light (OMPL). Lauritzen–Hoffmann theory was applied to analyze the crystallization kinetics and the Regime III was found for the crystallization of α-PVDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lovinger AJ (1982) In: Basset DC (ed) Developments in crystalline polymers, vol 1. Elsevier Applied Science, London

  2. Sencadas V, Moreira VM, Lanceros-Mendez S, Pouzada AS, Gregorio R Jr (2006) Mater Sci Forum 514:872

    Article  Google Scholar 

  3. Nalwa HS (1995) Ferroelectric polymers: chemistry, physics, and applications, vol 1. Marcel Dekker, Inc., New York

  4. Sencadas V, Lanceros-Mendez S, Gregorio R Jr (2009) J Macromol Sci B Phys 48:514

    Article  CAS  Google Scholar 

  5. Gregorio R Jr, Ueno EM (1999) J Mater Sci 34:4489. doi:10.1023/A:1004689205706

    Article  CAS  Google Scholar 

  6. Matsushige K, Nagata K, Imada S, Takemura T (1980) Polymer 21:1391

    Article  CAS  Google Scholar 

  7. Liu J, Qiu Z, Jungnickel BJ (2005) J Polym Sci B Polym Phys 43:287

    Article  Google Scholar 

  8. Liu J, Yan C, Lu J, Yang W (2007) Macromolecules 40:5047

    Article  ADS  Google Scholar 

  9. Chiu H-J (2002) J Polym Res 9:169

    Article  CAS  MathSciNet  Google Scholar 

  10. Mancarella C, Martuscelli E (1977) Polymer 18:1240

    Article  CAS  Google Scholar 

  11. Avrami M (1939) J Chem Phys 7:1103

    Article  CAS  ADS  Google Scholar 

  12. Avrami M (1940) J Chem Phys 8:212

    Article  CAS  ADS  Google Scholar 

  13. Avrami M (1941) J Chem Phys 9:177

    Article  CAS  ADS  Google Scholar 

  14. Iannace S, Nicolais L (1997) J Appl Polym Sci 64:911

    Article  CAS  Google Scholar 

  15. Strobl GR (1997) Physics of polymers: concepts for understanding their structures and behavior. Springer, Berlin

    Google Scholar 

  16. Hoffman JD, Weeks JJ (1962) J Res Natl Bur Stand 66:13

    Google Scholar 

  17. Brider RM, Khoury F (1987) Polymer 28:38

    Article  Google Scholar 

  18. Morra BS, Stein RS (1982) J Polym Sci Polym Phys 20:2261

    CAS  Google Scholar 

  19. Ducharme S, Bune AV, Blinov LM, Fridkin VM, Palto SP, Sorokin AV, Yudin SG (1998) Phys Rev B 57:25

    Article  CAS  ADS  Google Scholar 

  20. Silva MP, Sencadas V, Rolo AG, Botelho G, Machado AV, Rocha JG, Lanceros-Méndez S (2008) Mater Sci Forum 587–588:534

    Article  Google Scholar 

  21. Godowsky YK, Slonimisky JG (1974) J Polym Sci Polym Phys 12:1053

    Google Scholar 

  22. Lando JB, Olf HG, Peterlin A (1966) J Polym Sci A 4:941

    Article  CAS  Google Scholar 

  23. Nakagawa H, Ishida Y (1973) J Polym Sci Polym Phys 11:2153

    CAS  Google Scholar 

  24. He Y, Fan Z, Hu Y, Wu T, Wei J, Li S (2007) Eur Polym J 4:431

    Google Scholar 

Download references

Acknowledgements

The authors thank the COST action 12 “Structuring Polymers” and the Portuguese Foundation for Science and Technology (FCT) for financial support (Grants POCI/CTM/59425/2004, PTDC/CTM/69362/2006, and SFRH/BD/16543/2004 to V.S.). J.L.G.R. acknowledges the support of the Spanish Ministry of Science through Project No. MAT2007-66759-C03-01. The authors also thank to Solvay for providing the excellent quality material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lanceros-Mendez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sencadas, V., Costa, C.M., Gómez Ribelles, J.L. et al. Isothermal crystallization kinetics of poly(vinylidene fluoride) in the α-phase in the scope of the Avrami equation. J Mater Sci 45, 1328–1335 (2010). https://doi.org/10.1007/s10853-009-4086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4086-3

Keywords

Navigation