Skip to main content
Log in

1,3,4-Oxadiazole epoxy resin-based liquid crystalline thermosets and their cure kinetics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Liquid crystalline thermosets were synthesized based on a difunctional liquid–crystal (LC) epoxy resin monomer, namely 2,5-bis(4-glycidyloxyphenyl)-1,3,4-oxadiazole with various tetrafunctional crosslinkers such as diaminodiphenyl methane, diaminodiphenyl sulfone, and diaminodiphenyl ether. The epoxy monomer was characterized by infrared and nuclear magnetic resonance spectroscopy. Cure kinetics of a stoichiometric mixture of epoxy monomer and diaminodiphenyl methane was investigated by differential scanning calorimetry (DSC) for specimens cured under various cure conditions. The nematic LC texture for the cured specimen was identified by polarized microscopy and confirmed by X-ray diffractometry. Phase diagram of cure time versus transition temperature was constructed based on the DSC data for epoxy/DDM system. The diagram displayed the changes of melting transition, isotropic transition, and glass transition temperatures as curing proceeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee H, Neville K (1967) Handbook of epoxy resins. McGraw Hill, New York

    Google Scholar 

  2. Ellis B (1993) Chemistry and technology of epoxy resins. Blackie Academic and Professional, London

    Google Scholar 

  3. May CA, Tanaka GY (1973) Epoxy resin chemistry and technology. Marcel Dekker, New York

    Google Scholar 

  4. Bauer RS (1979) Epoxy resin chemistry. Advances in chemistry, vol 114. American Chemical Society, Washington, DC

    Google Scholar 

  5. Shau MD, Wang TS (1996) J Polym Sci A Polym Chem 34:387

    Article  CAS  Google Scholar 

  6. Carfagna C, Amendola E, Giamberini M (1994) Macromol Chem Phys 195:2307

    Article  CAS  Google Scholar 

  7. Carfagna C, Amendola E, Giamberini M, Filippov AG (1994) Macromol Chem Phys 195:279

    Article  CAS  Google Scholar 

  8. Amendola E, Carfagna C, Giamberini M, Pisaniello G (1994) Macromol Chem Phys 196:1557

    Google Scholar 

  9. Carfagna C, Amendola E, Gamberini M, Filippov AG, Bauer RS (1993) Liq Cryst 13:571

    Article  CAS  Google Scholar 

  10. Mormann W, Broecher M (1996) Macromol Chem Phys 197:1841

    Article  CAS  Google Scholar 

  11. Shiota A, Ober CK (1997) Prog Polym Sci 22:975

    Article  CAS  Google Scholar 

  12. Van Krevelen DW (1975) Polymer 16:615

    Article  Google Scholar 

  13. Barclay GG, Ober CK, Papathomas KI, Wang DW (1992) J Polym Sci A Polym Chem 30:1831

    Article  CAS  Google Scholar 

  14. Cho SH, Lee JY, Douglas EP, Lee JY (2006) High Perform Polym 18:83

    Article  CAS  Google Scholar 

  15. Lai C, Ke YC, Su JC, Li WR (2002) Liq Cryst 29:915

    Article  CAS  Google Scholar 

  16. Perin DD, Armerigo WLF (1988) Purification of laboratory chemicals. Pergamon, New York

    Google Scholar 

  17. Seigrist AE, Maeder E, Dunnenberger N (1965) Swiss Patent 383985; Chem Abst 62:14867c

  18. Lee AC, Ho TH, Wang CS (1996) J Appl Polym Sci 62:217

    Article  CAS  Google Scholar 

  19. Chen-Yang YW, Lee HF, Yuan CY (2000) J Polym Sci A Polym Chem 38:972

    Article  CAS  Google Scholar 

  20. Parekh JK, Patel RG (1995) Die Angew Macromol Chem 227:1

    Article  CAS  Google Scholar 

  21. Shiota A, Ober CK (1996) J Polym Sci A Polym Chem 34:1291

    Article  CAS  Google Scholar 

  22. Lin Q, Yee AF, Earls JD, Hefner RE Jr, Sue HJ (1994) J Polym 35:2679

    Article  CAS  Google Scholar 

  23. Mallon JJ, Adams PM (1993) J Polym Sci A Polym Chem 31:2249

    Article  CAS  Google Scholar 

  24. Barclay GG, McNamee SG, Ober CK, Papathomas KI, Wang DW (1992) J Polym Sci A Polym Chem 30:1845

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Indian Space Research Organization (ISRO), Bangalore, India (Ref. Sanction No. 10/3/473) under ‘RESPOND’ Grant-in-aid for scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balamurugan, R., Kannan, P. 1,3,4-Oxadiazole epoxy resin-based liquid crystalline thermosets and their cure kinetics. J Mater Sci 45, 1321–1327 (2010). https://doi.org/10.1007/s10853-009-4085-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4085-4

Keywords

Navigation