Skip to main content
Log in

Mesoporous titania–silica composite from sodium silicate and titanium oxychloride. Part II: one-pot co-condensation method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mesoporous titania–silica composite with large primary particles and homogeneous dispersion of Ti in the silica matrix were synthesized by the sol–gel method via a one-pot co-condensation method using cetyltrimethylammonium bromide (CTAB) as a structure-directing agent. Freshly prepared titanium oxychloride (TiOCl2, titania precursor that is relatively stable) and sodium silicate were used as titania and silica precursors (at the initial ratio of Ti:Si = 1), respectively. The final products were obtained after removing the template by calcination and had overall ratio of Ti:Si = 2:3 (based on EDS and XRF analyses). Other characterization techniques employed include FE-SEM, TEM, FT-IR, DTGA, and nitrogen physisorption studies. The textural properties of the products were highly influenced by the molar concentration of CTAB. Materials with large primary particles (submicrometer-scale dimensions) were obtained at higher concentrations of CTAB (1.7 wt%). The porosities of the templated material were highly reduced compared to that of the untemplated material, emphasizing the influence of Ti loading in the silica matrix. Both pore size and surface area increased at a calcination temperature of 550 °C. The DTGA result showed that the composites exhibited elevated thermal stability (up to 900 °C). In summary, mesoporous titania–silica composite with desirable properties were developed via the proposed method using a relatively inexpensive silica precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stokke JM, Mazyck DW (2008) Environ Sci Technol 42:3808

    Article  CAS  PubMed  Google Scholar 

  2. Song X, Gao L (2007) J Phys Chem C 111:8180

    Article  CAS  Google Scholar 

  3. Galindo IR, Viveros T, Chadwick D (2007) Ind Eng Chem Res 46:1138

    Article  CAS  Google Scholar 

  4. Wang J, Kuhn J, Lu X (1995) J Non-Cryst Solids 186:296–300

    Article  CAS  ADS  Google Scholar 

  5. Mdoe JEG, Macquarrie DJ (2005) Int J Sci Res 14:23

    Google Scholar 

  6. Mitrikas G (1998) J Non-Cryst Solids 224:17–22

    Article  CAS  ADS  Google Scholar 

  7. Delsannti M, Moussaid A, Munch JP (1993) J Colloid Interf Sci 157:285

    Article  Google Scholar 

  8. Reiche MA, Ortelli E, Baiker A (1999) Appl Catal B 23:187

    Article  CAS  Google Scholar 

  9. Nishikida K, Iwamoto R (1986) The analysis of material by infrared spectroscopy. Kodansya, Tokyo, p 209

  10. Kim JM, Stucky GD (2000) Chem Commun 1159–1160

  11. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373

    Article  CAS  Google Scholar 

  12. Pesquera C, González F, Blanco C, Sanchez L (2004) Appl Surf Sci 238:320

    Article  CAS  ADS  Google Scholar 

  13. Sierra L, Guth JL (1999) Microp Mesop Mater 27:243

    Article  CAS  Google Scholar 

  14. Matos JR, Mercuri LP, Kruk M, Jaroniec M (2002) Langmuir 18:884

    Article  CAS  Google Scholar 

  15. Zaki MI, Vielhaber B, KnOzinger H (1986) J Phys Chem 90:3176

    Article  CAS  Google Scholar 

  16. Yu JC, Yu J, Zhao J (2002) Appl Catal B Environ 36:31

    Article  CAS  Google Scholar 

  17. Lee JH, Yang YS (2005) J Mater Sci 40:2843. doi:10.1007/s10853-005-2434-5

    Article  CAS  ADS  Google Scholar 

  18. Shen S, Deng Y, Zhu G, Mao D, Wang Y, Wu G, Li J, Liu X, Lu G, Zhao D (2007) J Mater Sci 42:7057. doi:10.1007/s10853-007-1608-8

    Article  CAS  ADS  Google Scholar 

  19. Wang HN, Yuan P, Zhou L, Guo YN, Zou J, Yu AM, Lu GQ, Yu CZ (2009) J Mater Sci 44:6484. doi:10.1007/s10853-009-3578-5

    Article  CAS  Google Scholar 

  20. Berube F, Kleitz F, Kaliaguine S (2009) J Mater Sci 44:6727. doi:10.1007/s10853-009-3566-9

    Article  CAS  Google Scholar 

  21. Gao X, Wachs IE (1999) Catal Today 51:233

    Article  CAS  Google Scholar 

  22. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure App Chem 57(4):603–619

    Article  CAS  Google Scholar 

  23. Hilonga A, Kim JK, Sarawade PB, Kim HT (in press) J Mater Sci. doi:10.1007/s10853-009-4076-5

  24. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  ADS  Google Scholar 

  25. Linden M, Schunck SA, Schüth F (1998) Angew Chem Int Ed Engl 37:82

    Article  Google Scholar 

  26. Sicard L, Frasch J, Soulard M, Lebeau B, Patarin J, Davey T, Zana R, Kolenda F (2001) Microp Mesop Mater 44–45:25

    Article  Google Scholar 

  27. Zhang J, Carl PJ, Zimmermann H, Goldfarb D (2002) J Phys Chem B 106:5382

    Article  CAS  Google Scholar 

  28. Ying JY, Mehert CP, Wong MS (1998) Angew Chem Int Ed Engl 37:82

    Google Scholar 

  29. Sicard L, Lebeau B, Patarin J, Zana R (2002) Langmuir 18:74

    Article  CAS  Google Scholar 

  30. Patarin J, Lebeau B, Zana R (2002) Curr Opin Colloid Interf Sci 7:107

    Article  CAS  Google Scholar 

  31. Vautier-Giongo C, Pastore HO (2006) J Colloid Interf Sci 299:874

    Article  CAS  Google Scholar 

  32. Khalil KMS, Zaki MI (1997) Powder Technol 92:233

    Article  CAS  Google Scholar 

  33. Zhao L, Yu J, Chen B (2005) J Solid State Chem 178:1818

    Article  CAS  ADS  Google Scholar 

  34. Yu JG, Yu HG, Cheng B, Zhao XJ, Yu JC, Ho WK (2003) J Phys Chem B 107:13871

    Article  CAS  Google Scholar 

  35. Groen JC, Peffer LAA, Perez-Ramirez J (2003) Micropor Mesopor Mater 60(1–3):1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Ministry of Commerce and Industries of the Republic of Korea for financial support under the R & D Innovation Fund for Small and Medium Business Administration (Project Application No. S1017370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Taik Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 357 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilonga, A., Kim, JK., Sarawade, P.B. et al. Mesoporous titania–silica composite from sodium silicate and titanium oxychloride. Part II: one-pot co-condensation method. J Mater Sci 45, 1264–1271 (2010). https://doi.org/10.1007/s10853-009-4077-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4077-4

Keywords

Navigation