Journal of Materials Science

, Volume 45, Issue 8, pp 2223–2227 | Cite as

Influence of heat distribution and zone shape in the floating zone growth of selected oxide compounds

  • G. Behr
  • W. Löser
  • N. Wizent
  • P. Ribeiro
  • M.-O. Apostu
  • D. Souptel
HTC2009

Abstract

The effects of heat distribution, process parameters, and the ambient atmosphere on the characteristics of the molten zone are considered for floating zone (FZ) crystal growth of selected oxide compounds with special reference to cuprates. The outer shape of the FZ, which is stabilized only by capillary forces, and the interfaces between melt and growing crystal are decisive for process stability and crystal perfection. They do not only depend on external parameters such as zone heights, growth velocity, and rotation mode but are closely related to the phase diagram and the constitution of the individual substance. Therefore, the choice of the optimum process conditions is a subtle balance of parameters like appropriate focusing or defocusing of the light, the direction of growth and the ambient atmosphere, which are adapted to the individual substance. A pyrometric method of FZ temperature measurement was developed as an appropriate tool for process control.

References

  1. 1.
    Lüdge A, Riemann H, Wuenscher M, Behr G, Löser W, Muiznieks A, Croell A (2009) In: Duffar T (ed) Crystal growth processes based on capillarity: Czochralski, floating zone, shaping and crucible techniques, chap 4. Wiley, Chichester, England (in print)Google Scholar
  2. 2.
    Balbashov AM, Egorov SK (1981) J Cryst Growth 52:498CrossRefADSGoogle Scholar
  3. 3.
    Souptel D, Löser W, Behr G (2007) J Cryst Growth 300:538CrossRefADSGoogle Scholar
  4. 4.
    Koohpayeh SM, Fort D, Abell JS (2008) Prog Cryst Growth Character Mater 54:121CrossRefGoogle Scholar
  5. 5.
    Bednorz JG, Müller KA (1986) Z Physik 64:189ADSGoogle Scholar
  6. 6.
    Wu MK, Ashburn JR, Torng CJ, Hor PH, Meng RL, Gao L, Huang ZJ, Wang YQ, Chu CW (1987) Phys Rev Lett 58:908CrossRefADSPubMedGoogle Scholar
  7. 7.
    Cava RJ (1990) Science 247:656CrossRefADSPubMedGoogle Scholar
  8. 8.
    Tranquada JM, Sternlieb BJ, Axe JD, Nakamura Y, Uchida S (1995) Nature 375:561CrossRefADSGoogle Scholar
  9. 9.
    Wizent N, Behr G, Lipps F, Hellmann I, Klingeler R, Kataev V, Löser W, Sato N, Büchner B (2009) J Cryst Growth 311:1273CrossRefADSGoogle Scholar
  10. 10.
    Behr G, Löser W, Souptel D, Fuchs G, Mazilu I, Cao C, Köhler A, Schultz L, Büchner B (2008) J Cryst Growth 310:2268CrossRefADSGoogle Scholar
  11. 11.
    Behr G, Voigtländer R, Horst A, Morgner R, Fischer F, Patent DE 10 2006 019 807.7 (21 April 2006) and PCT/EP2007/05157 (7 March 2007)Google Scholar
  12. 12.
    Vanek P, Kadeckova S, Jurisch M, Löser W (1983) J Cryst Growth 63:191CrossRefADSGoogle Scholar
  13. 13.
    Louchev OA, Otani S, Ishizawa Y (1996) J Appl Phys 80:518CrossRefADSGoogle Scholar
  14. 14.
    Schramm L, Behr G, Löser W, Wetzig K (2005) J Phase Equilib Diffus 26:605Google Scholar
  15. 15.
    Behr G, Löser W, Apostu M-O, Gruner W, Hücker M, Schramm L, Souptel D, Teresiak A, Werner J (2005) Cryst Res Technol 40:21CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • G. Behr
    • 1
  • W. Löser
    • 1
  • N. Wizent
    • 1
  • P. Ribeiro
    • 1
  • M.-O. Apostu
    • 1
    • 2
  • D. Souptel
    • 1
    • 3
  1. 1.Institute of Solid State ResearchIFW DresdenDresdenGermany
  2. 2.Faculty of Chemistry, Physical and Theoretical ChemistryAl. I Cuza UniversityIasiRomania
  3. 3.Freiberger Compound Materials GmbHFreibergGermany

Personalised recommendations