Skip to main content
Log in

Microstructural effects on the phase transitions and the thermal evolution of elastic and piezoelectric properties in highly dense, submicron-structured NaNbO3 ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dielectric, piezoelectric and elastic coefficients, as well as the electromechanical coupling factors, of NaNbO3 submicron-structured ceramics have been obtained by an automatic iterative method from impedance measurements at resonance. Poled thin discs were measured from room temperature up to the depoling one, close to 300 °C. Dielectric thermal behaviour was determined also for unpoled ceramics up to the highest phase transition temperature. Ceramics were processed by hot-pressing from mechanically activated precursors. Microstructural effects on the properties are discussed. The suppression of the classical maximum in dielectric permittivity in unpoled ceramics at the phase transition at 370 °C was found when a bimodal distribution of grain sizes, with a population of average grain size of 110 nm in between much coarser grains, is observed. The appearance of a phase transition at 150 °C took place when Na vacancies are minimised. The occurrence of a non-centrosymmetric, ferroelectric phase, in the unpoled ceramic from room temperature to ~300 °C, highly polarisable resulting in high ferro–piezoelectric properties was also observed in the ceramic which presents grain size below 160 nm. Maximum values of k p = 14%, d 31 = −8.7 × 10−12 C N−1 and N p = 3772 Hz m at room temperature, and k p = 18%, d 31 = −25.4 × 10−12 C N−1 and N p = 3722 Hz m at 295 °C were achieved in the best processing conditions of the ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cross E (2004) Nature 432:24

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Shrout TR, Zhang SJ (2007) J Electroceram 19:111

  3. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London, 1971

  4. Li JF, Wang K, Zhang BP, Zhang LM (2006) J Am Ceram Soc 89:706

    Article  CAS  Google Scholar 

  5. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Nature 432:84

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Raevski IP, Prosandeev SA (2002) J Phys Chem Solids 63:1939

    Article  CAS  ADS  Google Scholar 

  7. Chen Z, He X, Yu Y, Hu J (2009) Jpn J Appl Phys 48:030204

    Article  ADS  Google Scholar 

  8. Ma Y, Chen XM (2009) J Appl Phys 105:054107

    Article  ADS  Google Scholar 

  9. Cross LE, Nicholson B (1955) J Phil Mag Ser 46:453

    CAS  Google Scholar 

  10. Nitta TJ (1968) J Am Ceram Soc 51:626

    Article  CAS  Google Scholar 

  11. Shirane G, Newnham B, Pepinsky R (1954) Phys Rev 96:581

    Article  CAS  ADS  Google Scholar 

  12. Megaw HD (1974) Ferroelectrics 7:87

    Article  CAS  Google Scholar 

  13. Arlt G, Hennings D, de With G (1985) J Appl Phys 58:1619

    Article  CAS  ADS  Google Scholar 

  14. Buessem WR, Cross LE, Goswami AK (1966) J Am Ceram Soc 49:33

    Article  CAS  Google Scholar 

  15. Shiratori Y, Magrez A, Dornseiffer J, Haegel FH, Pithan C, Waser R (2005) J Phys Chem B 109:20122

    Article  CAS  PubMed  Google Scholar 

  16. Shiratori Y, Magrez A, Kasezawa K, Kato M, Röhrig S, Peter F, Pithan C, Waser R (2007) J Electroceram 19:273

    Article  CAS  Google Scholar 

  17. Shanker V, Samal SL, Pradhan GK, Narayana C, Ganguli AK (2009) Solid State Sci 11:562

    Article  CAS  Google Scholar 

  18. Lanfredi S, Lente MH, Eiras JA (2002) Appl Phys Lett 80:2731

    Article  CAS  ADS  Google Scholar 

  19. Jiménez B, Castro A, Pardo L (2003) Appl Phys Lett 82:3940

    Article  ADS  Google Scholar 

  20. Jimenez R, Hungria T, Castro A, Jimenez-Rioboo R (2008) J Phys D Appl Phys 41:065408

    Article  ADS  Google Scholar 

  21. Pardo L, Durán-Martín P, Mercurio JP, Nibou L, Jiménez B (1997) J Phys Chem Solids 58:1335

    Article  CAS  ADS  Google Scholar 

  22. Reznitchenko LA, Turik AV, Kuznetsova EM, Sakhnenko VP (2001) J Phys: Condens Matter 13:3875

    Article  CAS  ADS  Google Scholar 

  23. Henson RM, Zeyfang RR, Kiehl KV (1977) J Am Ceram Soc 60:15

    Article  CAS  Google Scholar 

  24. Moure A, Hungría T, Castro A, Pardo L (2009) J Eur Ceram Soc 29:2297

    Article  CAS  Google Scholar 

  25. Hungria T, Pardo L, Moure A, Castro A (2005) J Alloys Compd 395:166

    Article  CAS  Google Scholar 

  26. Ricote J, Alemany C, Pardo L (1995) J Mater Res 10:3194

    Article  CAS  ADS  Google Scholar 

  27. Durán-Martín P (1997) Propiedades ferroeléctricas de materiales cerámicos con estructura tipo Aurivillius de composiciones basadas en Bi2SrNb2O9 Tesis Doctoral UAM

  28. Alemany C, Gónzalez AM, Pardo L, Jiménez B, Carmona F, Mendiola J (1995) J Phys D Appl Phys 28:945

    Article  CAS  ADS  Google Scholar 

  29. Moure A, Alemany C, Pardo L (2005) J Electrochem Soc 152:F1

    Article  CAS  Google Scholar 

  30. Shiratori Y, Magrez A, Fischer W, Pithan C, Waser R (2007) J Phys Chem C 111:18493

    Article  CAS  Google Scholar 

  31. Lee MH, Halliyal A, Newnham RE (1989) J Am Ceram Soc 72:986

    Article  CAS  Google Scholar 

  32. Wada T, Tsuji K, Saito T, Matsuo Y (2003) Jpn J Appl Phys 42:6110

    Article  CAS  ADS  Google Scholar 

  33. Dawber M, Lichtensteiger C, Cantoni M, Veithen M, Ghosez P, Johnston K, Rabe KM, Triscone JM (2005) Phys Rev Lett 95:177601

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Chen J, Feng D (1988) Phys Stat Sol (a) 109:171

    Article  CAS  Google Scholar 

  35. Raevskii IP, Reznichenko LA, Smotrakov VG, Eremkin VV, Malitskaya M, Kuznetsova EM, Shilkina LA (2000) Tech Phys Lett 26:744

    Article  CAS  ADS  Google Scholar 

  36. Wang XB, Shen ZX, Hu ZP, Qin L, Tang SH, Kuok MH (1996) J Mol Struct 385:1

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

Authors thanks the EC project “LEAF” G5RD-CT2001-00431, EC project “PIRAMID” G5RD-CT-2001-00456 and MAT2001-4818E (MCyT Spain), MAT2001-0561, CAM (07N/0076/2002), MAT2004-00868 and MAT2007-61884 projects, COST 528 and COST 539 Actions, Thematic Network CE (contract G5RT-CT2001-05024) and Network of Excellence, 6FP-CE (NMP3-CT-2005-515757). Drs. A. Moure and T. Hungría are indebted to the CSIC (MICINN) of Spain for the “Junta de Ampliación de Estudios” contracts (Refs JAEDOC087 and JAEDOC082, respectively). Thanks are also given to Ms. M. Antón (working under a FINNOVA2003-LEAF grant) for the powder samples preparation. Authors are indebted to late Dr. C. Alemany, for the implementation of the software used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Moure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moure, A., Hungría, T., Castro, A. et al. Microstructural effects on the phase transitions and the thermal evolution of elastic and piezoelectric properties in highly dense, submicron-structured NaNbO3 ceramics. J Mater Sci 45, 1211–1219 (2010). https://doi.org/10.1007/s10853-009-4067-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4067-6

Keywords

Navigation