Skip to main content

The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles

An Erratum to this article was published on 04 March 2011

Abstract

The present paper investigates the effect of adding silica nanoparticles to an anhydride-cured epoxy polymer in bulk and when used as the matrix of carbon- and glass-fibre reinforced composites. The formation of ‘hybrid’ epoxy polymers, containing both silica nanoparticles and carboxyl-terminated butadiene-acrylonitrile (CTBN) rubber microparticles, is also discussed. The structure/property relationships are considered, with an emphasis on the toughness and the toughening mechanisms. The fracture energy of the bulk epoxy polymer was increased from 77 to 212 J/m2 by the presence of 20 wt% of silica nanoparticles. The observed toughening mechanisms that were operative were (a) plastic shear-yield bands, and (b) debonding of the matrix from the silica nanoparticles, followed by plastic void-growth of the epoxy. The largest increases in toughness observed were for the ‘hybrid’ materials. Here a maximum fracture energy of 965 J/m2 was measured for a ‘hybrid’ epoxy polymer containing 9 wt% and 15 wt% of the rubber microparticles and silica nanoparticles, respectively. Most noteworthy was the observation that these increases in the toughness of the bulk polymers were found to be transferred to the fibre composites. Indeed, the interlaminar fracture energies for the fibre-composite materials were increased even further by a fibre-bridging toughening mechanism. The present work also extends an existing model to predict the toughening effect of the nanoparticles in a thermoset polymer. There was excellent agreement between the predictions and the experimental data for the epoxy containing the silica nanoparticles, and for epoxy polymers containing micrometre-sized glass particles. The latter, relatively large, glass particles were investigated to establish whether a ‘nano-effect’, with respect to increasing the toughness of the epoxy bulk polymers, did indeed exist.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Broutman LJ, Sahu S (1971) Mater Sci Eng 8:98

    Article  CAS  Google Scholar 

  2. Spanoudakis J, Young RJ (1984) J Mater Sci 19:473. doi:10.1007/BF00553571

    Article  CAS  Google Scholar 

  3. McGrath LM, Parnas RS, Lenhart JL, King S (2006) Polym Mater Sci Eng 94:683

    CAS  Google Scholar 

  4. Griffiths R, Holloway D (1970) J Mater Sci 5:302. doi:10.1007/BF02397781

    Article  CAS  Google Scholar 

  5. Dixon DG, Harris SJ, Dempster M, Nicholls P (1998) J Adhesion 65:131

    Article  CAS  Google Scholar 

  6. Kinloch AJ, Taylor AC (2002) J Mater Sci 37:433. doi:10.1023/A:1013735103120433-460

    Article  CAS  Google Scholar 

  7. Lin K-F, Shieh Y-D (1998) J Appl Polym Sci 70:2313

    Article  CAS  Google Scholar 

  8. Kim DS, Cho K, Kim JK, Park CE (1996) Polym Eng Sci 36:755

    Article  CAS  Google Scholar 

  9. Drake RS, Siebert AR (1975) SAMPE Quart 6:11

    CAS  Google Scholar 

  10. Kinloch AJ, Shaw SJ, Tod DA, Hunston DL (1983) Polymer 24:1341

    Article  CAS  Google Scholar 

  11. Yee AF, Pearson RA (1986) J Mater Sci 21:2462. doi:10.1007/BF01114293

    Article  CAS  Google Scholar 

  12. Bucknall CB, Partridge IK (1983) Polymer 24:639

    Article  CAS  Google Scholar 

  13. Kinloch AJ, Yuen ML, Jenkins SD (1994) J Mater Sci 29:3781. doi:10.1007/BF00357349

    Article  CAS  Google Scholar 

  14. Bucknall CB, Gilbert AH (1989) Polymer 30:213

    Article  CAS  Google Scholar 

  15. Johnsen BB, Kinloch AJ, Taylor AC (2005) Polymer 46:7352

    Article  CAS  Google Scholar 

  16. Kinloch AJ, Finch CA, Hashemi S (1987) Polym Comm 28:322

    CAS  Google Scholar 

  17. Pearson RA, Yee AF (1989) J Mater Sci 24:2571. doi:10.1007/BF01174528

    Article  CAS  Google Scholar 

  18. Liang YL, Pearson RA (2009) Polymer 50:4895

    Article  CAS  Google Scholar 

  19. Kim JK, Baillie C, Poh J, Mai YW (1992) Composites Sci Tech 43:283

    Article  CAS  Google Scholar 

  20. Gilchrist MD, Svensson N (1995) Composites Sci Tech 55:195

    Article  CAS  Google Scholar 

  21. Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S, Egan D (2006) J Mater Sci 41:5043. doi:10.1007/s10853-006-0130-8

    Article  CAS  Google Scholar 

  22. Kinloch AJ, Lee JH, Taylor AC, Sprenger S, Eger C, Egan D (2003) J Adhesion 79:867

    Article  CAS  Google Scholar 

  23. Blackman BRK, Kinloch AJ, Sohn Lee J, Taylor AC, Agarwal R, Schueneman G, Sprenger S (2007) J Mater Sci 42:7049. doi:10.1007/s10853-007-1768-6

    Article  CAS  Google Scholar 

  24. Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Polymer 48:530

    Article  CAS  Google Scholar 

  25. Kinloch AJ, Mohammed RD, Taylor AC, Eger C, Sprenger S, Egan D (2005) J Mater Sci 40:5083. doi:10.1007/s10853-005-1716-2

    Article  CAS  Google Scholar 

  26. BS-EN-2564 (1998) Carbon fibre laminates—Determination of the fibre, resin and void contents. BSI, London

  27. BS-EN-ISO-527-2 (1996) Plastics—Determination of tensile properties—Part 2: test conditions for moulding and extrusion plastics. BSI, London

  28. Williams JG, Ford H (1964) J Mech Eng Sci 6:405

    Article  Google Scholar 

  29. ISO-13586 (2000) Plastics-determination of fracture toughness (GIC and KIC)—linear elastic fracture mechanics (LEFM) approach. ISO, Geneva

  30. ASTM-D5528 (2001) Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. ASTM, West Conshohocken

  31. Sue HJ (1991) Polym Eng Sci 31:270

    Article  CAS  Google Scholar 

  32. Sue HJ, Yee AF (1993) J Mater Sci 28:2975. doi:10.1007/BF00354702

    Article  CAS  Google Scholar 

  33. Pearson RA, Yee AF (1991) J Mater Sci 26:3828. doi:10.1007/BF01184979

    Article  CAS  Google Scholar 

  34. Baller J, Becker N, Ziehmer M, Thomassey M, Zielinski B, Müller U, Sanctuary R (2009) Polymer 50:3211

    Article  CAS  Google Scholar 

  35. Fox TG (1956) Bull Am Phys Soc 1:123

    CAS  Google Scholar 

  36. Mohammed RD (2007) PhD in Mechanical Engineering, Imperial College of Science, Technology & Medicine, London

  37. Lee JH (2006) PhD in Mechanical Engineering, Imperial College of Science, Technology & Medicine, London

  38. Goodfellow Product Catalogue (2005) Goodfellow, Huntingdon

  39. Pascoe KJ (1978) An introduction to the properties of engineering materials. Van Nostrand Reinhold, London

    Google Scholar 

  40. Kerner EH (1956) Proc Phys Soc B 69:808

    Article  Google Scholar 

  41. Nielsen LE (1966) J Appl Polym Sci 10:97

    Article  CAS  Google Scholar 

  42. Halpin JC, Pagano NJ (1969) J Composite Mater 3:720

    Google Scholar 

  43. Halpin JC (1969) J Composite Mater 3:732

    Google Scholar 

  44. Halpin JC, Kardos JL (1976) Polym Eng Sci 16:344

    Article  CAS  Google Scholar 

  45. Vollenberg PHT, Heikens D (1989) Polymer 30:1656

    Article  CAS  Google Scholar 

  46. Lewis TB, Nielsen LE (1970) J Appl Polym Sci 14:1449

    Article  CAS  Google Scholar 

  47. McGee S, McCullough RL (1981) Polym Compos 2:149

    Article  CAS  Google Scholar 

  48. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. Marcel Dekker, New York

    Google Scholar 

  49. Nielsen LE (1968) J Composite Mater 2:120

    Google Scholar 

  50. Pearson RA, Yee AF (1986) J Mater Sci 21:2475. doi:10.1007/BF01114294

    Article  CAS  Google Scholar 

  51. Andrews EH (1968) Fracture in polymers. Oliver & Boyd, Edinburgh

    Google Scholar 

  52. Kinloch AJ (1986) In: Kinloch AJ (ed) Structural adhesives—Developments in resins and primers. Applied Science Publishers, London

    Google Scholar 

  53. Karger-Kocsis J, Friedrich K (1992) Colloid Polym Sci 270:549

    Article  CAS  Google Scholar 

  54. Cheng C, Hiltner A, Baer E, Soskey PR, Mylonakis SG (1995) J Mater Sci 30:587. doi:10.1007/BF00356315

    Article  CAS  Google Scholar 

  55. Azimi HR, Pearson RA, Hertzberg RW (1996) Polym Eng Sci 36:2352

    Article  CAS  Google Scholar 

  56. Chen TK, Jan YH (1992) J Mater Sci 27:111. doi:10.1007/BF00553845

    Article  CAS  Google Scholar 

  57. Hunston DL, Moulton RJ, Johnston NJ, Bascom WD (1985) In: Johnston NJ (ed) Toughened composites. ASTM, Philadelphia

    Google Scholar 

  58. Sue HJ, Yee AF (1989) J Mater Sci 24:1447. doi:10.1007/BF02397085

    Article  CAS  Google Scholar 

  59. Bagheri R, Pearson RA (1996) J Mater Sci 31:3945. doi:10.1007/BF00352655

    Article  CAS  Google Scholar 

  60. Bagheri R, Pearson RA (1995) J Appl Polym Sci 58:427

    Article  CAS  Google Scholar 

  61. Caddell RM (1980) Deformation and fracture of solids. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  62. Lee J, Yee AF (2000) Polymer 41:8375

    Article  CAS  Google Scholar 

  63. Kawaguchi T, Pearson RA (2003) Polymer 44:4239

    Article  CAS  Google Scholar 

  64. Kinloch AJ (1987) Adhesion and adhesives: science and technology. Chapman & Hall, London

    Google Scholar 

  65. Norman DA, Robertson RE (2003) Polymer 44:2351

    Article  CAS  Google Scholar 

  66. Huang Y, Kinloch AJ (1992) J Mater Sci 27:2753. doi:10.1007/BF00540702

    Article  CAS  Google Scholar 

  67. Huang Y, Kinloch AJ (1992) J Mater Sci 27:2763. doi:10.1007/BF00540703

    Article  CAS  Google Scholar 

  68. Evans AG, Williams S, Beaumont PWR (1985) J Mater Sci 20:3668. doi:10.1007/BF01113774

    Article  CAS  Google Scholar 

  69. Dekkers MEJ, Heikens D (1984) J Mater Sci 19:3271. doi:10.1007/BF00549814

    Article  CAS  Google Scholar 

  70. Dekkers MEJ, Heikens D (1985) J Mater Sci 20:3873. doi:10.1007/BF00552375

    Article  CAS  Google Scholar 

  71. Sultan JN, McGarry FJ (1973) Polym Eng Sci 13:29

    Article  CAS  Google Scholar 

  72. Guild FJ, Young RJ (1989) J Mater Sci 24:298. doi:10.1007/BF00660971

    Article  CAS  Google Scholar 

  73. Guild FJ, Young RJ (1989) J Mater Sci 24:2454. doi:10.1007/BF01174511

    Article  CAS  Google Scholar 

  74. Kinloch AJ, Young RJ (1983) Fracture behaviour of polymers. Applied Science Publishers, London

    Google Scholar 

  75. Lee J, Yee AF (2000) Polymer 41:8363

    Article  CAS  Google Scholar 

  76. Green DJ, Nicholson PS, Embury JD (1979) J Mater Sci 14:1657. doi:10.1007/BF00569287

    Article  Google Scholar 

  77. Faber KT, Evans AG (1983) Acta Metall 31:565

    Article  Google Scholar 

  78. Sun CJ, Saffari P, Sadeghipour K, Baran G (2005) Mater Sci Eng A 405:287

    Article  Google Scholar 

  79. Pukanszky B, Voros G (1996) Polym Compos 17:384

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the EPSRC for a doctoral training award for Mr. Masania. They would also like to acknowledge the general support of Emerald Performance Materials, Henkel, Nanoresins and the US Army European Research Office. Some of the equipment used was provided by Dr. Taylor’s Royal Society Mercer Junior Award for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. J. Kinloch or A. C. Taylor.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s10853-011-5420-0

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hsieh, T.H., Kinloch, A.J., Masania, K. et al. The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J Mater Sci 45, 1193–1210 (2010). https://doi.org/10.1007/s10853-009-4064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4064-9

Keywords

  • Fracture Energy
  • Silica Nanoparticles
  • Epoxy Matrix
  • Rubber Particle
  • Dynamic Mechanical Thermal Analysis