Skip to main content
Log in

Ultra-long SiO2 and SiO2/TiO2 tubes embedded with Pt nanoparticles using magnus green salt as templating structures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For the first time, magnus green salt (MGS, [Pt(NH3)4][PtCl4]) fibers precipitated by solvent modification have been employed as a structure-directing modifier to synthesize single silica and silica/titania microtubes via a sol–gel process. In the case of titania tubes, tetraethylorthosilicate must be used as a capping agent to hinder the aggregation of primary MGS fibers and to serve as a protective layer against thermal stress during the metal salt fiber reduction. This implies that SiO2/TiO2 tubes result. The synthesized tubular materials were imaged by scanning and transmission electron microscopy, while their composition was determined by energy dispersive X-ray analysis and thermogravimetric analysis. Crystallinity and thermal stability of the tube walls were studied using X-ray diffraction analysis. The obtained oxide tubes possess high aspect ratios (80–200) because they are up to 60 μm in length, but only 300–700 nm in thickness. The key aspects of the synthesis approach are that the templating MGS fibers control the internal diameter of the oxide tubes, while the synthesis conditions control their wall thickness. The suggested method is a simple approach which produces, at low temperatures, very long oxide tubes with a very high amount of Pt (48–51 wt%) directly incorporated inside the tubes. To the best of our knowledge, filling of SiO2 or SiO2/TiO2 nanotubes with such a dense population of Pt metal nanoparticles has not been demonstrated so far; our own experiments with [Pt(NH3)4](HCO3)2 as templating salt formed only tubes containing about 40 wt% Pt and were only about 20 μm long. The now formed more Pt-rich tubes are expected to have vivid applications in (photo)catalysis and in fabricating novel devices, such as nano- or sub-microcables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shi WS, Peng HY, Wang N, Li CP, Xu L, Lee CS (2001) J Am Chem Soc 123:11095

    Article  CAS  PubMed  Google Scholar 

  2. Li YC, Li XH, Yang CH, Li YF (2003) J Mater Chem 13:2641

    Article  CAS  Google Scholar 

  3. Law M, Goldberger J, Yang PD (2004) Annu Rev Mater Res 34:83

    Article  CAS  Google Scholar 

  4. Ohsaki Y, Masaki N, Kitamura T, Wada Y, Okamoto T, Sekino T, Niihara K, Yanagida S (2005) Phys Chem Chem Phys 7:4157

    Article  CAS  PubMed  Google Scholar 

  5. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Nano Lett 6:215

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Martinson ABF, Elam JW, Hupp JT, Pellin MJ (2007) Nano Lett 7:2183

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Varghese OK, Gong D, Paulose M, Ong KG, Grimes CA (2003) Sens Actuators B 93:338

    Article  Google Scholar 

  8. Martin CR, Kohli P (2003) Nat Rev Drug Discov 2:29

    Article  CAS  PubMed  Google Scholar 

  9. Park J, Kim HS, Bard AJ (2006) Nano Lett 6:24

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Fan R, Karnik R, Yue M, Li D, Majumdar A, Yang P (2005) Nano Lett 5:1633

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Quan X, Yang S, Ruan X, Zhao H (2005) Environ Sci Technol 39:3770

    Article  CAS  PubMed  Google Scholar 

  12. Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Nature 421:241

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Kijima T, Yoshimura T, Uota M, Ikeda T, Fujikawa D, Mouri S, Uoyama S (2004) Angew Chem Int Ed 43:228

    Article  CAS  Google Scholar 

  14. Goldberger J, He RR, Zhang YF, Lee S, Yan HQ, Choi HJ, Yang PD (2003) Nature 422:599

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Hu JQ, Bando Y, Zhan JH, Goldberg D (2004) Angew Chem Int Ed 43:4606

    Article  CAS  Google Scholar 

  16. Patzke GR, Krumeich F, Nesper R (2002) Angew Chem Int Ed 41:2446

    Article  CAS  Google Scholar 

  17. Johnson BFG (2003) Top Catal 24:147

    Article  CAS  ADS  Google Scholar 

  18. Qu J, Zhang X, Wang Y, Xie C (2005) Electrochim Acta 50:3576

    Article  CAS  Google Scholar 

  19. Albu SP, Ghicov A, Macak JM, Schmuki P (2007) Nano Lett 7:1286

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Nanotechnology 18:065707

    Article  ADS  Google Scholar 

  21. Adachi M, Murata Y, Okada I, Yoshikawa S (2003) J Electrochem Soc 150:G488

    Article  CAS  Google Scholar 

  22. Guisbiers G, Van Overschelde O, Wautelet M (2008) Appl Phys Lett 92:103121

    Article  ADS  Google Scholar 

  23. Bavykin DV, Walsh FC (2009) Eur J Inorg Chem 8:977

    Article  Google Scholar 

  24. Ghicov A, Schmucki P (2009) Chem Commun 2791

  25. Nakahira A, Kato W, Tamai M, Isshiki T, Nishio K, Ariani H (2004) J Mater Sci 39:4239. doi:10.1023/B:JMSC.0000033405.73881.7c

    Article  CAS  ADS  Google Scholar 

  26. Adachi M, Murata Y, Harada M, Yoshikawa S (2000) Chem Lett 29:942

    Article  Google Scholar 

  27. Akita T, Okumura M, Tanaka K, Ohkuma K, Kohyama M, Koyanagi T, Date M, Tsubota S, Haruta M (2005) Surf Interface Anal 37:265

    Article  CAS  Google Scholar 

  28. Arbiol J, Cirera A, Peiró F, Cornet A, Morante JR, Delgado JJ, Calvino JJ (2002) Appl Phys Lett 80:329

    Article  CAS  ADS  Google Scholar 

  29. Epifani M, Helwig A, Arbiol J, Diaz R, Francioso L, Siciliano P, Mueller G, Morante JR (2008) Sens Actuator B 130:599

    Article  Google Scholar 

  30. Sato Y, Koizumi M, Miyao T, Naito S (2006) Catal Today 111:164

    Article  CAS  Google Scholar 

  31. Li Y, Ye CH, Fang XS, Yang L, Xiao YH, Zhang LD (2005) Nanotechnology 16:501

    Article  CAS  ADS  Google Scholar 

  32. Lim YB, Bando YS, Goldberg D (2003) Adv Mater 15:581

    Article  Google Scholar 

  33. Bae C, Yoo H, Kim S, Lee K, Kim J, Sung MM, Shin H (2008) Chem Mater 20:756

    Article  CAS  Google Scholar 

  34. Mayya KS, Gittins DI, Dibaj AM, Caruso F (2001) Nano Lett 1:727

    Article  CAS  ADS  Google Scholar 

  35. Sander MS, Côté MJ, Gu W, Kile BM, Tripp CP (2004) Adv Mater 16:2052

    Article  CAS  Google Scholar 

  36. Caruso RA, Schattka JH, Greiner A (2001) Adv Mater 13:1577

    Article  CAS  Google Scholar 

  37. Hippe C, Wark M, Lork E, Schulz-Ekloff G (1999) Micropor Mesopor Mater 31:235

    Article  CAS  Google Scholar 

  38. Wark M, Hippe C, Schulz-Ekloff G (2000) Stud Surf Sci Catal 129:475

    Article  CAS  Google Scholar 

  39. Ren L, Wark M (2005) Chem Mater 17:5928

    Article  CAS  Google Scholar 

  40. Ren L, Guo M, Wark M, Hou Y (2005) Appl Phys Lett 87:212503

    Article  ADS  Google Scholar 

  41. Ren L, He L, Chen C, Wark M, Li C, Che P, Guo L (2007) J Magn Magn Mater 312:405

    Article  CAS  ADS  Google Scholar 

  42. Ohya T, Nakayama A, Ban T, Ohya Y, Takahashi Y (2002) Chem Mater 14:3082

    Article  CAS  Google Scholar 

  43. Atoji M, Richardson JW, Rundle RE (1957) J Am Chem Soc 79:3017

    Article  CAS  Google Scholar 

  44. Bremi J, Brovelli D, Caseri W, Hähner G, Smith P, Tervoort T (1999) Chem Mater 11:977

    Article  CAS  Google Scholar 

  45. Interrante LV, Messmer RP (1971) Inorg Chem 10:1175

    Article  Google Scholar 

  46. Sanchez C, Livage J, Henry M, Babonneau F (1998) J Non-Cryst Solids 100:65

    Article  Google Scholar 

  47. Jiang X, Herricks T, Xia Y (2003) Adv Mater 15:1205

    Article  CAS  Google Scholar 

  48. Sun YG, Xia YN (2004) Adv Mater 16:264

    Article  CAS  Google Scholar 

  49. Delattre L, Babonneau F (1997) Chem Mater 9:2385

    Article  CAS  Google Scholar 

  50. Pickup DM, Mountjoy G, Wallidge GW, Anderson R, Cole JM, Newport RJ, Smith ME (1999) J Mater Chem 19:1299

    Article  Google Scholar 

  51. Rajesh Kumar S, Suresh C, Vasudevan AK, Suja NR, Mukundan P, Warrier KGK (1999) Mater Lett 38:161

    Article  CAS  Google Scholar 

  52. Lümmen N, Kraska T (2005) Nanotechnology 16:2870

    Article  ADS  Google Scholar 

  53. Qian HS, Antonietti M, Yu SH (2007) Adv Funct Mater 17:637

    Article  CAS  Google Scholar 

  54. Ren L (2004) PhD thesis, University of Hannover, Germany

  55. Ismail AA, Bahnemann DW, Bannat I, Wark M (2009) J Phys Chem C 113:7429

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to Dr. Falk Heinroth (Institute of Inorganic Chemistry, Leibniz University of Hannover) for performing TGA analysis and Prof. Dr. Jürgen Caro (Institute of Physical Chemistry, Leibniz University of Hannover) for general support. The work was financially supported by Deutsche Forschungsgemeinschaft (DFG, WA 1116-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aresipathi, C., Feldhoff, A. & Wark, M. Ultra-long SiO2 and SiO2/TiO2 tubes embedded with Pt nanoparticles using magnus green salt as templating structures. J Mater Sci 45, 1179–1188 (2010). https://doi.org/10.1007/s10853-009-4062-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4062-y

Keywords

Navigation