Skip to main content
Log in

Surface tension of γ-TiAl-based alloys

  • HTC2009
  • Published:
Journal of Materials Science Aims and scope Submit manuscript


Within the Integrated Project IMPRESS, funded by the EU, a concerted action was taken to determine the thermophysical properties of a γ-TiAl-based alloys, suitable for casting of large turbine blades for aero-engines and stationary gas turbines. The challenge was to develop a castable alloy, free of grain refiners and susceptible to heat treatment. Owing to the high reactivity of this class of alloys, many difficulties were encountered to process the liquid phase in a crucible. This prevented also the measurements of specific heat, viscosity and electrical conductivity in the liquid phase. However, surface tension and density could be measured using container-less techniques. For the surface tension determination, both the oscillating droplet method by the electromagnetic levitation as well as a combined method using two methodologies in one test (i.e. the pendant drop and sessile drop) by an advanced experimental complex that has been designed for investigations of high temperature capillarity phenomena were applied. All the quantities have been obtained as a function of temperature, in some cases also in the undercooled liquid. In this article, we report a comparative discussion on the results obtained for the surface tension of Ti–Al–Nb and Ti–Al–Ta alloys, together with the corresponding theoretical values calculated by thermodynamic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others


  1. Lapin J, Pelechova T, Domankova M, Daloz D, Nazmy M (2007) Metall Mater 45:121

    CAS  Google Scholar 

  2. Jarvis DJ, Voss D (2005) Mater Sci Eng A 413–414:583

    Google Scholar 

  3. Kuang JP, Harding RA, Campbell J (2001) Int J Cast Met Res 13:277

    CAS  Google Scholar 

  4. Johnson DR, Masuda Y, Inui H, Yamaguchi M (1997) Acta Mater 45:2523

    Article  CAS  Google Scholar 

  5. Egry I, Brooks R, Holland-Moritz D, Novakovic R, Matsushita T, Ricci E, Seetharaman S, Wunderlich R, Jarvis D (2007) Int J Thermophys 28:1026

    Article  CAS  Google Scholar 

  6. Choudhury NS, Graham HC, Hinze JW (1976) In: Foroulis ZA, Pettit FS (eds) Properties of high temperature alloys. The Electrochemical Society, Princeton, p 668

    Google Scholar 

  7. Lang C, Schütze M (1997) Mater Corros 48:13

    Article  CAS  Google Scholar 

  8. Herlach DM, Cochrane RF, Egry I, Fecht HJ, Greer AL (1993) Int Mater Rev 38:273

    CAS  Google Scholar 

  9. Fabrichnaya O, Seifert HJ, Ludwig T, Aldinger F, Navrotsky A (2001) Scand J Metall 30:17

    Article  Google Scholar 

  10. Barzilai S, Aizenshtein M, Froumin N, Frage N (2006) J Mater Sci 41:5108. doi:10.1007/s10853-006-0435-7

    Article  CAS  ADS  Google Scholar 

  11. Cummings DL, Blackburn DA (1991) J Fluid Mech 224:395

    Article  ADS  Google Scholar 

  12. Naidich YuV (1981) In: Cadenhead DA, Danielli JF (eds) Progress in surface and membrane science, vol 14. Academic Press, New York

    Google Scholar 

  13. Sobczak N, Nowak R, Radziwill W, Budzioch J, Glenz A (2008) Mater Sci Eng A 495:43

    Article  Google Scholar 

  14. Garandet JP, Vinet B, Gros P (1994) J Colloid Interface Sci 165:351

    Article  CAS  Google Scholar 

  15. Butler JAV (1932) Proc R Soc A135:348

    ADS  Google Scholar 

  16. Singh RN (1987) Can J Phys 65:309

    CAS  ADS  Google Scholar 

  17. Singh RN, Sommer F (1997) Rep Prog Phys 60:57

    Article  CAS  ADS  Google Scholar 

  18. Speiser R, Poirier DR, Yeum K (1987) Scripta Metall 21:687

    Article  CAS  Google Scholar 

  19. Tanaka T, Hack K, Hara S (1999) MRS Bull April 1999:45

    Google Scholar 

  20. Egry I, Brillo J, Matsushita T (2005) Mater Sci Eng A 413–414:460

    Google Scholar 

  21. Novakovic R, Ricci E, Giuranno D, Passerone A (2005) Surf Sci 576(1–3):175

    Article  CAS  ADS  Google Scholar 

  22. Saunders N (1998) In: Ansara I, Dinsdale AT, Rand MH (eds) COST 507—Thermochemical database for light metal alloys, vol 2. European Communities, Luxembourg, p 89

    Google Scholar 

  23. Witusiewicz VT, Bondar AA, Hecht U, Rex S, Velikanova TYa (2008) J Alloys Compd 465:64

    Article  CAS  Google Scholar 

  24. Iida T, Guthrie RIL (1993) The physical properties of liquid metals. Clarendon Press, Oxford

    Google Scholar 

  25. Lang G, Laty P, Joud JC, Desré P (1977) Z Metallkd 68(2):113

    CAS  Google Scholar 

  26. Ishikawa T, Paradis PF, Itami T, Yoda S (2003) J Chem Phys 118(17):7912

    Article  CAS  ADS  Google Scholar 

  27. Vinet B, Magnusson L, Fredriksson H, Desré PJ (2002) J Colloid Interface Sci 255:363

    Article  CAS  PubMed  Google Scholar 

Download references


This study has been partially supported by the European Union (6th E.C. Framework Programme) in the framework of the IP IMPRESS (Contract NMP3-CT-2004-500635) financed research project. Financial support from the Foundry Research Institute has also been acknowledged.

Author information

Authors and Affiliations


Corresponding author

Correspondence to E. Ricci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, R., Lanata, T., Sobczak, N. et al. Surface tension of γ-TiAl-based alloys. J Mater Sci 45, 1993–2001 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: