Skip to main content
Log in

Blend membranes from poly(2,5-benzimidazole) and poly(styrene sulfonic acid) as proton-conducting polymer electrolytes for fuel cells

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polymer electrolyte membranes were fabricated by blending of poly(2,5-benzimidazole) (ABPBI) and poly(styrene sulfonic acid) (PSSA) at several molar ratios with respect to repeating units. Fourier transform infrared spectroscopy was used to elucidate inter-polymer interactions. Surface morphology was studied through scanning electron microscope. Thermal properties of the membranes were investigated by thermogravimetric analysis and differential scanning calorimetry. The spectroscopic measurements and water uptake (WU) studies indicate a complexation between ABPBI and PSSA where the swelling behavior of membranes increases with the PSSA content. Proton conductivities of the anhydrous and humidified samples were measured using impedance spectroscopy. Proton conductivity of ABPBI:PSSA bend with (1:4) molar ratio was detected as around 10−3 S/cm at higher temperatures under anhydrous conditions. On the other hand, the membrane ABPBI:PSSA (1:2) showed the proton conductivity of 0.02 S/cm (ambient temperature, RH = 50%) which is at least five-order of magnitude higher than the anhydrous material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu HL, Ma CCM, Liu FY, Chen CY, Lee SJ, Chiang CL (2006) Eur Polym J 42:1688

    Article  CAS  Google Scholar 

  2. Kerres JA (2001) J Membr Sci 185:3

    Article  CAS  Google Scholar 

  3. Rikukawa M, Sanui K (2000) Prog Polym Sci 25(10):1463

    Article  CAS  Google Scholar 

  4. Kreuer KD (2001) J Membr Sci 185(1):29

    Article  CAS  Google Scholar 

  5. Carrette L, Friedrich KA, Stimming U (2000) Chemphyschem 1(4):162

    Article  CAS  Google Scholar 

  6. Kreuer KD (2002) Chemphyschem 3(9):771

    Article  CAS  Google Scholar 

  7. Schuster MFH, Meyer WH, Schuster M, Kreuer KD (2004) Chem Mater 16(2):329

    Article  CAS  Google Scholar 

  8. Wainright JS, Wang JT, Weng D, Savinell RF, Litt M (1995) J Electrochem Soc 142:L121

    Article  CAS  Google Scholar 

  9. Schuster MFH, Meyer WH (2003) Annu Rev Mater Res 33:233

    Article  CAS  Google Scholar 

  10. Smitha B, Sridhar S, Khan AA (2005) J Membr Sci 259:10

    Article  CAS  Google Scholar 

  11. Chang HY, Lin CW (2003) J Membr Sci 218:295

    Article  CAS  Google Scholar 

  12. Shen Y, Xi J, Qiu X, Zhu W (2007) Electrochim Acta 52:6956

    Article  CAS  Google Scholar 

  13. Bozkurt A, Meyer WH (2001) Solid State Ionics 138:259

    Article  CAS  Google Scholar 

  14. Bozkurt A, Meyer WH (2001) J Polym Sci B Phys 39:1987

    Article  CAS  Google Scholar 

  15. Schechter A, Savinell RF (2002) Solid State Ionics 147:181

    Article  CAS  Google Scholar 

  16. Asensio JA, Gomez-Romero P (2005) Fuel Cells 5(3):336

    Article  CAS  Google Scholar 

  17. Ma YL, Wainright JS, Litt MH, Savinell RF (2004) J Elecrochem Soc 151(1):A8

    Article  CAS  Google Scholar 

  18. Bouchet R, Siebert E, Vitter G (1997) J Electrochem Soc 144(5):L95

    Article  CAS  Google Scholar 

  19. Acar O, Sen U, Bozkurt A, Ata A (2009) Int J Hydrogen Energy 34:2724

    Article  CAS  Google Scholar 

  20. Sun J, Jordan LR, Forsyth M, MacFarlane DR (2001) Electrochim Acta 46:1703

    Article  CAS  Google Scholar 

  21. Vink H (1981) Macromol Chem Phys 182:279

    Article  CAS  Google Scholar 

  22. Asensio JA, Borros S, Gomez-Romero P (2002) J Polym Sci A Polym Chem 40:3703

    Article  CAS  Google Scholar 

  23. Bozkurt A (2005) Turk J Chem 29:17

    Google Scholar 

  24. Ismail AF, Zubir N, Nasef MM, Dahlan KM, Hassan AR (2005) J Membr Sci 254:189

    Article  CAS  Google Scholar 

  25. Asensio JA, Borros S, Gomez-Romero P (2004) J Electrochem Soc 151(2):A304

    Article  CAS  Google Scholar 

  26. Jiang DD, Yao O, McKinney MA, Wilkie CA (1999) Polym Degrad Stab 63:423

    Article  CAS  Google Scholar 

  27. Hickman BS, Mascal M, Titman JJ, Wood IG (1999) J Am Chem Soc 121:11486

    Article  CAS  Google Scholar 

  28. Goward GR, Schuster MFH, Sebastiani D, Schnell I, Spiess HW (2002) J Phys Chem B 106:9322

    Article  CAS  Google Scholar 

  29. Munch W, Kreuer KD, Silvestri W, Maier J, Seifert G (2001) Solid State Ionics 145:437

    Article  CAS  Google Scholar 

  30. Dippel Th, Kreuer KD, Lassegues JC, Rodriguez D (1993) Solid State Ionics 61:41

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by TUBITAK under the contract number 108T103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Bozkurt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acar, O., Sen, U., Bozkurt, A. et al. Blend membranes from poly(2,5-benzimidazole) and poly(styrene sulfonic acid) as proton-conducting polymer electrolytes for fuel cells. J Mater Sci 45, 993–998 (2010). https://doi.org/10.1007/s10853-009-4030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4030-6

Keywords

Navigation