Skip to main content
Log in

Electromigration-induced Bi-rich whisker growth in Cu/Sn–58Bi/Cu solder joints

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Effect of current stressing on whisker growth in Cu/Sn–58Bi/Cu solder joints was investigated with current densities of 5 × 103 and 104 A/cm2 in oven at different temperatures. Two types of whiskers, columnar-type and filament-type, were observed on the solder film propagating along the surface of the Cu substrate and at the cathode interface, respectively, accompanied with many hillocks formation. Typically, these whiskers were 5–15 μm in length and 0.06–2 μm in diameter. EDX revealed that these whiskers and hillocks were mixtures of Sn and Bi rather than single crystal. It should be noted that the sprouted whiskers would not grow any more even if the current-stressing time increased again when the solder joint was stressed under lower current density. Nevertheless, when the current density was up to 104 A/cm2, the whiskers would melt along with the increasing current-stressing time. Results indicated that the compressive stress generated by precipitation of Cu6Sn5 intermetallics provides a driving force for whisker growth on the solder film, and the Joule heating accumulation should be responsible for whisker growth at the cathode interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nah JW, Paik KW, Suh JO, Tu KN (2003) J Appl Phys 94:7560

    Article  CAS  Google Scholar 

  2. Lin YC, Zhong J (2008) J Mater Sci 43(9):3072. doi:https://doi.org/10.1007/s10853-007-2320-4

    Article  CAS  Google Scholar 

  3. Lin YH, Hu YC, Tsai CM, Kao CR, Tu KN (2005) Acta Mater 53:2029

    Article  CAS  Google Scholar 

  4. Lin YW, Lai YS, Lin YL, Tu C-T, Kao CR (2007) J Electron Mater 37:17

    Article  Google Scholar 

  5. Kakeshita T, Kawanaka R, Hasegawa T (1982) J Mater Sci 17:2560. doi:https://doi.org/10.1007/BF00543888

    Article  CAS  Google Scholar 

  6. Lin YW, Lai YS (2008) J Electron Mater 37(1):17

    Article  CAS  Google Scholar 

  7. Yuki F, Michael O, Michael P (2007) Microelectron Reliab 47:88

    Article  Google Scholar 

  8. Hu C-C, Tsai Y-D, Lin C-C, Lee G-L, Chen S-W, Lee T-C, Wen T-C (2008) J Alloy Compd 472:121. doi:https://doi.org/10.1016/j.jallcom.2008.04.094

    Article  Google Scholar 

  9. He HW, Xu GC, Guo F (2009) J Mater Sci 44(8):2089. doi:https://doi.org/10.1007/s10853-009-3276-3

    Article  CAS  Google Scholar 

  10. Chen C-M, Huang C-C (2008) J Mater Res 23(4):1051

    Article  CAS  Google Scholar 

  11. Chen ZG (2002) J Electron Mater 31(10):1122

    Article  CAS  Google Scholar 

  12. Chen ZG (2003) Ph.D. Thesis, Beijing University of Technology

  13. Guo F, Xu GC, He HW (2009) J Mater Sci 44(20):5595. doi:https://doi.org/10.1007/s10853-009-3787-y

    Article  CAS  Google Scholar 

  14. Hongwen HE, Guangchen XU, Hu HAO et al (2007) ICEPT, Shanghai, China, pp 225–229

  15. Boettinger WJ, Johnson CE, Bendersky LA, Moon KW, Williams ME, Stafford GR (2005) Acta Mater 53:5033

    Article  CAS  Google Scholar 

  16. Choi WJ, Lee TY, Tu KN (2003) Acta Mater 51:6253

    Article  CAS  Google Scholar 

  17. Tu KN, Chen C, Wu AT (2007) J Mater Sci: Mater Electron 18:269

    CAS  Google Scholar 

  18. Jung K, Conrad H (2004) J Mater Sci 39:1803. doi:https://doi.org/10.1023/B:JMSC.0000016189.01285.35

    Article  CAS  Google Scholar 

  19. Gu X, Chan YC (2008) J Electron Mater 37:1721

    Article  CAS  Google Scholar 

  20. Galyon GT, Palmer L (2005) IEEE Trans Electron Packag Manuf 28(1):17

    Article  CAS  Google Scholar 

  21. Ma HT (2009) J Mater Sci 44(14):3841. doi:https://doi.org/10.1007/s10853-009-3521-9

    Article  CAS  Google Scholar 

  22. Cheng F, Nishikawa H, Takemoto T (2008) J Mater Sci 43(10):3643. doi:https://doi.org/10.1007/s10853-008-2580-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of this work from the New Century Talent Support Program, Ministry of Education, and the Funding Project PHR (IHLB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwen He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, H., Xu, G. & Guo, F. Electromigration-induced Bi-rich whisker growth in Cu/Sn–58Bi/Cu solder joints. J Mater Sci 45, 334–340 (2010). https://doi.org/10.1007/s10853-009-3939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3939-0

Keywords

Navigation