Chlorinated polyethylene nanocomposites: thermal and mechanical behavior

Abstract

Chlorinated polyethylene (CPE) nanocomposites prepared with natural and organically treated montmorillonite (MMT) clays by solution intercalation method were investigated. X-ray diffraction and transmission electron microscopy techniques showed separation of organically modified clay MMT layers and indicated formation of exfoliated nanocomposites. Fourier transform infrared spectroscopy results showed interaction between the CPE matrix and the clay intercalants of Cloisite® 30B and Cloisite® 15A (natural MMT modified with quaternary ammonium salts). Organically treated MMT clays were found to be better dispersed in CPE in comparison to natural MMT clay. Mechanical testing showed enhanced tensile strength, Young’s modulus, and storage modulus of chlorinated-polymers/organically treated MMT clay nanocomposites. Significant improvements in the above properties were obtained with Cloisite® 15A nanoclay. The temperature, at which maximum degradation occurred, was higher for the nanocomposite having 5 wt% Cloisite 15A than that of neat CPE. Differential scanning calorimetric results revealed that the same composition also absorbed more heat during the heating, indicating better thermal stability. CPE rubber nanocomposite could be a promising heat resistant polymeric material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Usuki A, Kawasumi M, Okada A (1993) J Mater Res 8:1174

    CAS  Article  Google Scholar 

  2. 2.

    Usuki A, Kojima Y, Kawasumi M, Okada A (1993) J Mater Res 8:1179

    CAS  Article  Google Scholar 

  3. 3.

    Fornes TD, Yoon PJ, Keskkula H, Paul DR (2001) Polymer 42:9929

    CAS  Article  Google Scholar 

  4. 4.

    Hasegawa N, Kawasumi M, Kato M, Usiki A, Okada A (1998) J Appl Polym Sci 67:8792

    Article  Google Scholar 

  5. 5.

    Aranda P, Ruiz-Hitzhy E (1999) Appl Clay Sci 15:119

    CAS  Article  Google Scholar 

  6. 6.

    Sandi G, Carrado KA, Joachin H, Lu W, Prakash J (2003) J Power Sources 119:492

    Article  Google Scholar 

  7. 7.

    Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O (1993) J Polym Sci A Polym Chem 31:2493

    CAS  Article  Google Scholar 

  8. 8.

    Donnet JB (2003) Compos Sci Technol 63:1085

    CAS  Article  Google Scholar 

  9. 9.

    Zhang LQ, Wu YP, Wang YQ (2000) China Synth Rubber Ind 23:71

    CAS  Google Scholar 

  10. 10.

    Hamed GR (2000) Rubber Chem Technol 73:524

    CAS  Article  Google Scholar 

  11. 11.

    Zhang L, Wang Y, Wang Y, Sui Y, Yu D (2000) J Appl Polym Sci 78:1873

    CAS  Article  Google Scholar 

  12. 12.

    Wang Y, Zhang L, Tang C, Yu D (2000) J Appl Polym Sci 78:1879

    CAS  Article  Google Scholar 

  13. 13.

    Wu Y-P, Zhang L-Q, Wang Y-Q, Liang Y, Yu D-S (2001) J Appl Polym Sci 82:2842

    CAS  Article  Google Scholar 

  14. 14.

    Maiti M, Bhowmick AK (2006) Polymer 47(17):6156

    CAS  Article  Google Scholar 

  15. 15.

    Maiti M, Bhowmick AK (2007) J App Polym Sci 105(2):435

    CAS  Article  Google Scholar 

  16. 16.

    Maji PK, Guchhait PK, Bhowmick AK (2009) ACS Appl Mater Interface 1:289

    CAS  Article  Google Scholar 

  17. 17.

    Usuki A, Tukigase A, Kato M (2002) Polymer 43:2185

    CAS  Article  Google Scholar 

  18. 18.

    Acharya H, Srivastava SK, Bhowmick AK (2007) Compos Sci Technol 67(13):2807

    CAS  Article  Google Scholar 

  19. 19.

    Arroyo M, Lopen-Manchado MA, Herrero B (2003) Polymer 44:2447

    CAS  Article  Google Scholar 

  20. 20.

    Varghese S, Karger-Kocsis J (2003) Polymer 44:4921

    CAS  Article  Google Scholar 

  21. 21.

    Ganter M, Gronski W, Reichert P, Muelhaupt R (2001) Rubber Chem Technol 74:221

    CAS  Article  Google Scholar 

  22. 22.

    Ganguly A, De Sarkar M, Bhowmick AK (2006) J Polym Sci B Polym Phys 45(1):52

    Article  Google Scholar 

  23. 23.

    Kim Y, White JL (2003) J Appl Polym Sci 90:1581

    CAS  Article  Google Scholar 

  24. 24.

    Datta H, Singha NK, Bhowmick AK (2008) Macromolecules 41:50

    CAS  Article  Google Scholar 

  25. 25.

    Patel S, Bandyopadhyay A, Vijayabaskar V, Bhowmick AK (2005) Polymer 46:2005

    Article  Google Scholar 

  26. 26.

    Sadhu S, Bhowmick AK (2004) J Polym Sci B Polym Phys 42:1573

    CAS  Article  Google Scholar 

  27. 27.

    Giannelis EP, Krishnamoorti R, Manias E (1999) Adv Polym Sci 118:108

    Google Scholar 

  28. 28.

    Chrissopoulou K, Altintzi I, Andrianaki I, Shemesh R, Retsos H, Giannelis EP, Anastasiadis SH (2008) J Polym Sci B Polym Phys 46:2683

    CAS  Article  Google Scholar 

  29. 29.

    Vo LT, Giannelis EP (2007) Macromolecules 40:8271

    CAS  Article  Google Scholar 

  30. 30.

    Zanetti M, Kashiwagi T, Falqui L, Camino G (2002) Chem Mater 14:881

    CAS  Article  Google Scholar 

  31. 31.

    Wang SF, Hu Y, Lin ZH, Gui Z, Wang ZZ, Chen ZY, Fan WCH (2003) Polym Int 52:1045

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anil K. Bhowmick.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kar, S., Maji, P.K. & Bhowmick, A.K. Chlorinated polyethylene nanocomposites: thermal and mechanical behavior. J Mater Sci 45, 64–73 (2010). https://doi.org/10.1007/s10853-009-3891-z

Download citation

Keywords

  • Clay
  • Storage Modulus
  • Dynamic Mechanical Thermal Analysis
  • Methyl Ethyl Ketone
  • Rubber Matrix