Skip to main content
Log in

The influence of stearic acid coating on the properties of magnesium hydroxide, hydromagnesite, and hydrotalcite powders

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydrated filler-type flame retardants were coated with approximately a monolayer of stearic acid using a solvent technique. Compared to the uncoated powders, the BET surface area was lower, the powder packing density was improved, and the thickening effect on white oil was significantly reduced. The latter two observations are rationalized in terms of a reduction in the attractive interactions between the powder particles. The viscosity of white oil slurries containing 25 wt% solids showed shear-thinning non-Newtonian behavior. The coated powders showed significantly lower viscosities at low shear rates although the difference diminished at high shear rates. The lower viscosities shown by the coated powders indicate that the surface modification facilitated the break-up of agglomerates and the dispersion of individual particles in the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Scheme 3
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Laoutid F, Bonnaud L, Alexandre M (2009) Mater Sci Eng R 63(3):100

    Article  Google Scholar 

  2. Delfosse L, Baillet C, Brault A, Brault D (1989) Polym Degrad Stab 23(4):337

    Article  CAS  Google Scholar 

  3. Horn WE (2000) In: Grand AF, Wilkie CA (eds) Fire retardancy of polymeric materials, 1st edn. CRC Press, Boca Raton, p 293

    Google Scholar 

  4. Hornsby PR (2001) Int Mater Rev 46(4):199

    Article  CAS  Google Scholar 

  5. Fenimore CP, Jones GW (1966) Combust Flame 10(2):295

    Article  CAS  Google Scholar 

  6. Fenimore CP, Martin FJ (1966) Combust Flame 10(2):135

    Article  CAS  Google Scholar 

  7. Hornsby PR, Watson CL (1989) Plast Rubber Process Appl 11(1):45

    CAS  Google Scholar 

  8. Hornsby PR, Watson CL (1990) Polym Degrad Stab 30(1):73

    Article  CAS  Google Scholar 

  9. Carpentier F, Bourbigot S, Le Bras M, Delobel R, Foulon M (2000) Polym Degrad Stab 69(1):83

    Article  CAS  Google Scholar 

  10. Genovese A, Shanks (2007) Polym Degrad Stab 92(1):2

    Article  CAS  Google Scholar 

  11. Burns M, Wagenknecht U, Kretzschmar B, Focke WW (2008) J Vinyl Addit Technol 14:113

    Article  CAS  Google Scholar 

  12. Wang Z, Chen Z, Fan W, Nie W (2006) Polym Plast Technol Eng 45(2):191

    Article  CAS  Google Scholar 

  13. Zhang F, Zhang H, Su Z (2007) Appl Surf Sci 253(18):7393

    Article  CAS  Google Scholar 

  14. Usui H (2002) J Chem Eng Jpn 35(9):815

    Article  CAS  Google Scholar 

  15. Potente H, Flecke J (1997) J Reinf Plast Compos 16(14):1281

    Article  CAS  Google Scholar 

  16. Papirer E, Schultz J, Turchi C (1984) Eur Polym J 20:1155

    Article  CAS  Google Scholar 

  17. Gilbert M, Petiraksakul P (1997) Polym Polym Compos 5(8):535

    CAS  Google Scholar 

  18. Osman M, Suter U (2002) Chem Mater 14:4408

    Article  CAS  Google Scholar 

  19. Khanna YP, Taylor DA, Paynter CD, Skuse DR (2009) J Mater Sci (submitted)

  20. Liauw CM, Rothon RN, Hurst SJ, Lees GC (1998) Compos Interfaces 5(6):503

    Article  CAS  Google Scholar 

  21. Gilbert M, Sutherland I, Guest A (2000) J Mater Sci 35(2):391. doi:https://doi.org/10.1023/A:1004759115462

    Article  CAS  Google Scholar 

  22. Gilbert M, Petiraksakul P, Mathieson I (2001) Mater Sci Technol 17(11):1472

    Article  CAS  Google Scholar 

  23. Haurie L, Fernández AI, Velasco JI, Chimenos JM, Ticó-Grau JR, Espiell F (2005) Macromol Symp 221:165

    Article  CAS  Google Scholar 

  24. Hornsby PR (1999) Adv Polym Sci 139:155

    Article  CAS  Google Scholar 

  25. Hornsby PR (1994) Fire Mater 18(5):269

    Article  CAS  Google Scholar 

  26. Rigolo M, Woodhams RT (1992) Polym Eng Sci 32:327

    Article  CAS  Google Scholar 

  27. Huang H, Tian M, Yang J, Li H, Liang W, Zhang L, Li X (2008) J Appl Polym Sci 107(5):3325

    Article  CAS  Google Scholar 

  28. Camino G, Maffezzoli A, Braglia M, De Lazzaro M, Zammarano M (2001) Polym Degrad Stab 74(3):457

    Article  CAS  Google Scholar 

  29. Miyata S, Imahashi T, Anabuki H (1980) J Appl Polym Sci 25(3):415

    Article  CAS  Google Scholar 

  30. Miyata S, Kumura T (1973) Chem Lett 843–848

  31. Bellotto M, Rebours B, Clause O, Lynch J (1996) J Phys Chem 100:8524

    Google Scholar 

  32. De Roy A, Forano C, El Malki K, Besse JP (1992) In: Occelli ML, Robson HE (eds) Expanded clays and other microporous solids, 1st edn, vol 2. Van Nostrand Reinhold, New York, p 108

  33. White WB (1971) Am Mineral 56:46

    CAS  Google Scholar 

  34. Hales MC, Frost RL, Martens WN (2008) J Raman Spectrosc 39:1141

    Article  CAS  Google Scholar 

  35. Raade G (1970) Am Mineral 55(9–10):1457

    CAS  Google Scholar 

  36. Hayek E, Gleispach H (1966) Monatsh Chem 97(4):1059

    Article  CAS  Google Scholar 

  37. Haurie L, Fernández AI, Velasco JI, Chimenos JM, Lopez Cuesta JM, Espiell F (2006) Polym Degrad Stab 91(5):989

    Article  CAS  Google Scholar 

  38. Morgan AB, Cogen JM, Opperman RS, Harris JD (2007) Fire Mater 3(6):387

    Article  Google Scholar 

  39. Botha A, Strydom CA (2001) Hydrometallurgy 62(3):175

    Article  CAS  Google Scholar 

  40. Bera P, Rajamathi M, Hegde MS, Kamath PV (2000) Bull Mater Sci 23:141

    Article  CAS  Google Scholar 

  41. Choudhary VR, Pataskar SG, Gunjikar VG, Zope GB (1994) Thermochim Acta 232:95

    Article  CAS  Google Scholar 

  42. Itoh T, Ohta N, Shichi T, Yui T, Takagi K (2003) Langmuir 19:9120

    Article  CAS  Google Scholar 

  43. He JX, Yamashita S, Jones W, Yamagishi A (2002) Langmuir 18:1580

    Article  CAS  Google Scholar 

  44. Mandersloot WGB, Scott KJ (1990) S Afr J Chem Eng 2:53

    CAS  Google Scholar 

  45. Krieger IM, Dougherty TJ (1959) Trans Soc Rheol 3:137

    Article  CAS  Google Scholar 

  46. Krieger (1972) Adv Colloid Interface Sci 3(2):111

    Article  CAS  Google Scholar 

  47. Jones DAR, Leary B, Boger DV (1991) J Colloid Interface Sci 147(2):479

    Article  CAS  Google Scholar 

  48. Eilers H (1941) Kolloid-Z 97(3):313

    Article  CAS  Google Scholar 

  49. Eilers H (1943) Kolloid-Z 102(2):154

    Article  CAS  Google Scholar 

  50. Usui H, Kishimoto K, Suzuki H (2001) Chem Eng Sci 56(9):2979

    Article  CAS  Google Scholar 

  51. Quemada D (1986) Rheol Acta 25(6):647

    Article  CAS  Google Scholar 

  52. Wildemuth CR, Williams MC (1984) Rheol Acta 23(6):627

    Article  CAS  Google Scholar 

  53. Tsenoglou C (1990) J Rheol 34(1):15

    Article  Google Scholar 

  54. Rwei SP, Manas-Zloczower I, Feke DL (1990) Polym Eng Sci 30(12):701

    Article  CAS  Google Scholar 

  55. Hansen S, Khakhar DV, Ottino JM (1998) Chem Eng Sci 53(10):1803

    Article  CAS  Google Scholar 

  56. Jalali P, Li M (2004) J Chem Phys 120(2):1138

    Article  CAS  Google Scholar 

  57. Rey F, Fornés V, Rojo JM (1992) J Chem Soc Faraday Trans 88:2233

    Article  CAS  Google Scholar 

  58. Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M (1979) Thermochim Acta 33:127

    Article  CAS  Google Scholar 

  59. Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutan N, Kato M (1979) Thermochim Acta 32(1–2):277

    Article  CAS  Google Scholar 

  60. Vágvölgyi V, Frost RL, Hales M, Locke A, Kristóf J, Horváth E (2008) J Therm Anal Calorim 92(3):893

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this research, from the Institutional Research Development Programme (IRDP) of the National Research Foundation of South Africa (NRF) and the THRIP program of the Department of Trade and Industry (administered by the NRF), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter W. Focke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Focke, W.W., Molefe, D., Labuschagne, F.J.W. et al. The influence of stearic acid coating on the properties of magnesium hydroxide, hydromagnesite, and hydrotalcite powders. J Mater Sci 44, 6100–6109 (2009). https://doi.org/10.1007/s10853-009-3844-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3844-6

Keywords

Navigation