Skip to main content
Log in

Weibull modulus of nano-hardness and elastic modulus of hydroxyapatite coating

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Here we report the microstructural dependence of nano-hardness (H) and elastic modulus (E) of microplasma sprayed (MIPS) 230 μm thick highly porous, heterogeneous hydroxyapatite (HAP) coating on SS316L. The nano-hardness and Young’s modulus data were measured on polished plan section (PS) of the coating by the nanoindentation technique with a Berkovich indenter. The characteristic values of nano-hardness and Young’s modulus were calculated through the application of Weibull statistics. Both nano-hardness and the Young’s modulus data showed an apparent indentation size effect. In addition, there was an increasing trend of Weibull moduli values for both the nano-hardness and the Young’s modulus data of the MIPS-HAP coating as the indentation load was enhanced from 10 to 1,000 mN. An attempt was made in the present work, to provide a qualitative model that can explain such behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D (2009) Mater Manuf Process 24(12)

  2. Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D, Bandyopadhyay NR (2009) Ceram Int 35:2295

    Article  CAS  Google Scholar 

  3. Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D (2008) In: Raghu Prasad BK, Narasimhan R (eds) Proceedings of interquadrennial conference of international congress on fracture, August 3–7, 2008, Bangalore, India. I. K. International Publishing House Pvt. Ltd., pp 311–313

  4. Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D (2008) In: Raghu Prasad BK, Narasimhan R (eds) Proceedings of interquadrennial conference of international congress on fracture, August 3–7, 2008, Bangalore, India. I. K. International Publishing House Pvt. Ltd., pp 217–219

  5. Wen J, Leng Y, Chen J, Zhang C (2000) Biomaterials 21:1339

    Article  PubMed  CAS  Google Scholar 

  6. Zhang C, Leng Y, Chen J (2001) Biomaterials 22:1357

    Article  PubMed  CAS  Google Scholar 

  7. Khor KA, Li H, Cheang P (2003) Biomaterials 24:769

    Article  PubMed  CAS  Google Scholar 

  8. Cheng GJ, Pirzada D, Cai M, Mohanty P, Bandyopadhyay A (2005) Mater Sci Eng C 25:541

    Article  Google Scholar 

  9. Chen Y, Zhang YQ, Zhang TH, Gan CH, Zheng CY, Yu G (2006) Carbon 44:37

    Article  CAS  Google Scholar 

  10. Nieh TG, Jankowski AF, Koike J (2001) J Mater Res 16:3238

    Article  ADS  CAS  Google Scholar 

  11. Nieh TG, Choi BW, Jankowski AF (2001) Minerals, Metals and Materials Society Annual Meeting and Exhibition

  12. Arias JL, Mayor MB, Pou J, Leng Y, Leon B, Amora MP (2003) Biomaterials 24:3403

    Article  PubMed  CAS  Google Scholar 

  13. Gross KA, Samandari SS (2007) J Aus Ceram Soc 43:98

    CAS  Google Scholar 

  14. Zhang S, Wang YS, Zeng XT, Khor KA, Weng W, Sun DE (2008) Thin Solid Films 516:5162

    Article  ADS  CAS  Google Scholar 

  15. Saber-Samandari S, Gross KA (2009) Surf Coat Tech (article in press). doi:10.1016/j.surfcoat.2009.05.033

  16. Pelletier H, Nelea V, Mille P, Muller D (2004) J Mater Sci 39:3605. doi:10.1023/B:JMSC.0000030712.81704.b0

    Article  ADS  CAS  Google Scholar 

  17. Zhou H, Li F, He B, Wang J, Sun B (2007) Surf Coat Tech 201:7360

    Article  CAS  Google Scholar 

  18. Basu D, Funke C, Steinbrech RW (1999) J Mater Res 14:4643

    Article  ADS  CAS  Google Scholar 

  19. Guo S, Kagawa Y (2006) Ceram Int 32:263

    Article  CAS  Google Scholar 

  20. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  ADS  CAS  Google Scholar 

  21. Ma Q, Clarke DR (1995) J Mater Res 10:853

    Article  ADS  CAS  Google Scholar 

  22. Bull SJ, Pag TF, Yoffe EH (1989) Phil Mag Lett 59:281

    Article  ADS  CAS  Google Scholar 

  23. Mukhopadhyay NK, Paufler P (2006) Int Mater Rev 51:209

    Article  CAS  Google Scholar 

  24. Mukhopadhyay NK, Bhatt J, Pramanik AK, Murty BS, Paufler P (2004) J Mater Sci 39:5155. doi:10.1023/B:JMSC.0000039202.27103.4c

    Article  ADS  CAS  Google Scholar 

  25. Bernhardt EO (1941) Z Metallkd 33:135

    CAS  Google Scholar 

  26. Nix WD, Gao H (1998) J Mech Phys Solid 46:411

    Article  MATH  ADS  CAS  Google Scholar 

  27. Horstemeyer MF, Baskes MI, Plimpton SJ (2001) Acta Mater 49:4363

    Article  CAS  Google Scholar 

  28. Iost A, Bigot R (1996) J Mater Sci 31:3573. doi:10.1007/BF00360764

    CAS  Google Scholar 

  29. Li H, Gosh A, Han YH, Bradt RC (1993) J Mater Res 8:1028

    Article  ADS  CAS  Google Scholar 

  30. Swain MV, Wittling M (1996) In: Bradt RC et al (eds) Fracture mechanics of ceramics, vol 11. Plenum Press, New York, p 379

    Google Scholar 

  31. Gong J, Guan Z (2001) Mater Lett 47:140

    Article  CAS  Google Scholar 

  32. Gao YX, Fan H (2002) J Mater Sci 37:4493. doi:10.1023/A:1020662215932

    Article  CAS  Google Scholar 

  33. Paternoster C, Fabrizi A, Cecchini R, Mehtedi ME, Choquet P (2008) J Mater Sci 43:3377. doi:10.1007/s10853-007-2392-1

    Article  ADS  CAS  Google Scholar 

  34. Hays C, Kendall EG (1973) Metallography 6:275

    Article  CAS  Google Scholar 

  35. Li H, Bradt RC (1991) Mater Sci Eng A 142:51

    Article  Google Scholar 

  36. Peng Z, Gong J, Miao H (2004) J Eur Ceram Soc 24:2193

    Article  CAS  Google Scholar 

  37. Taylor GI (1934) Proc R Soc London A 145:362

    Article  ADS  CAS  Google Scholar 

  38. Taylor GI (1938) J Inst Metal 62:307

    Google Scholar 

  39. Kumar RR, Wang M (2002) Mater Sci Eng A 338:230

    Article  Google Scholar 

  40. Huang Y, Zhang F, Hwang KC, Nix WD, Pharr GM, Feng G (2006) J Mech Phys Sol 54:1668

    Article  MATH  ADS  Google Scholar 

  41. Mukhopadhyay AK, Phani KK (1998) J Mater Sci 33:69. doi:10.1023/A:1004385327370

    Article  CAS  Google Scholar 

  42. Rossi RC (1968) J Am Ceram Soc 51:433

    Article  Google Scholar 

  43. Sneddon IN (1965) Int J Eng Sci 3:47

    Article  MATH  MathSciNet  Google Scholar 

  44. Doerner MF, Nix WD (1986) J Mater Res 1:601

    Article  ADS  Google Scholar 

  45. Field JS, Swain MV (1993) J Mater Res 8:297

    Article  ADS  CAS  Google Scholar 

  46. Malzbender J, Steinbrech RW (2003) J Mat Res 18:1975

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Director, Central Glass and Ceramic Research Institute (CGCRI), Kolkata for his kind permission to publish this paper and to Dr. D. K. Bhattacharya, Head, Analytical Facility Division of CGCRI for his kind encouragements during the course of this work. One of the authors (A.D.) also sincerely acknowledges the support and encouragements received from Prof. N. R. Bandyopadhyay of the School of Materials Science and Engineering, Bengal Engineering and Science University (BESU), Shibpur. The authors also appreciate the infrastructural support received from all colleagues and particularly those received from the colleagues of the Scanning Electron Microscopy Section, Mechanical Test Section, and Bio-Ceramics and Coating Division at CGCRI. Finally, the authors gratefully acknowledge financial support received from DST-SERC (Project No: GAP 0216) and CSIR (Network Project TAREMAC No: NWP 0027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop K. Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, A., Mukhopadhyay, A.K., Gangadharan, S. et al. Weibull modulus of nano-hardness and elastic modulus of hydroxyapatite coating. J Mater Sci 44, 4911–4918 (2009). https://doi.org/10.1007/s10853-009-3750-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3750-y

Keywords

Navigation