Journal of Materials Science

, Volume 44, Issue 17, pp 4613–4616 | Cite as

Synthesis and variable temperature electrical conductivity studies of highly ordered TiO2 nanotubes

  • Ramazan Asmatulu
  • Annamalai Karthikeyan
  • David C. Bell
  • Shriram Ramanathan
  • Michael J. AzizEmail author


Rafts of aligned, high aspect ratio TiO2 nanotubes were fabricated by an electrochemical anodization method and their axial electrical conductivities were determined over the temperature range 225–400 °C. Length, outer diameter, and wall thickness of the nanotubes were approximately 60–80 μm, 160 nm, and 30 nm, respectively. Transmission electron microscopy studies confirmed that the TiO2 nanotubes were initially amorphous, and became polycrystalline anatase after heat treatment at temperatures as low as 250 °C in air. The activation energy for conductivity over the temperature range 250–350 °C was found to be 0.87 eV. The conductivity values are comparable to those of nanocrystalline and nanoporous anatase thin films reported in literature.


TiO2 Nanotubes Electrical Conductivity Measurement Titania Nanotubes Nanostructured Titania Nanocrystalline Anatase 



The authors gratefully acknowledge Craig Grimes and his group for helpful discussions and helping us to replicate their TiO2 nanotube synthesis methods, Taeseok Kim for technical assistance and Changhyun Ko for indexing the diffraction pattern. The research of M. J. A. was supported in part by the U.S. Department of Energy grant DE-FG02-06ER46335. AK and SR acknowledge GCEP for financial support. This work was performed in part at the Center for Nanoscale Systems at Harvard University member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765.


  1. 1.
    Wittmer H, Holten S, Kliem H et al (2000) Phys Stat Sol A Appl Res 181:2CrossRefGoogle Scholar
  2. 2.
    Graetzel M, O’Regan B (1991) Nature 353:737CrossRefGoogle Scholar
  3. 3.
    Diebold U (2003) Surf Sci Rep 48:53CrossRefGoogle Scholar
  4. 4.
    Cardona AI, Candal R, Sanchez B et al (2004) Energy 29:845CrossRefGoogle Scholar
  5. 5.
    Shaw K, Christensen P, Hamnett A (1996) Electrochim Acta 41:719CrossRefGoogle Scholar
  6. 6.
    Kozuka H, Takahashi Y, Zhao GL et al (2000) Thin Solid Films 358:172CrossRefGoogle Scholar
  7. 7.
    Zukalova M, Kavan L, Zukal A, Nazeeruddin MK, Liska P, Gratzel M (2005) Nano Lett 5:1789CrossRefGoogle Scholar
  8. 8.
    Cahen D, Bisquert J, Hodes G, Ruhle S, Zaban A (2004) J Phys Chem B 108:8106Google Scholar
  9. 9.
    Kijitori Y, Miyasaka T (2004) J Electrochem Soc 151:A1767CrossRefGoogle Scholar
  10. 10.
    Mor GK, Varghese OK, Paulose M et al (2006) Sol Energy Mater Sol Cells 90:2011CrossRefGoogle Scholar
  11. 11.
    Frank AJ, Kopidakis N, van de Lagemat J (2004) Coord Chem Rev 248:1165CrossRefGoogle Scholar
  12. 12.
    Shankar K, Mor GK, Prakasam H, Yoriya ES, Paulose M, Varghese OK, Grimes CA (2007) Nanotechnology 18:065707CrossRefGoogle Scholar
  13. 13.
    Gerhardt R (1994) J Phys Chem Solids 55:1491CrossRefGoogle Scholar
  14. 14.
    Dittrich T, Weidmann J, Koch F et al (1999) Appl Phys Lett 75:3980CrossRefGoogle Scholar
  15. 15.
    Huber B, Brodyanski A, Scheib M et al (2005) Thin Solid Films 472:114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ramazan Asmatulu
    • 1
    • 2
  • Annamalai Karthikeyan
    • 1
  • David C. Bell
    • 1
    • 3
  • Shriram Ramanathan
    • 1
  • Michael J. Aziz
    • 1
    Email author
  1. 1.Harvard School of Engineering and Applied SciencesCambridgeUSA
  2. 2.Department of Mechanical EngineeringWichita State UniversityWichitaUSA
  3. 3.Center for Nanoscale SystemsHarvard UniversityCambridgeUSA

Personalised recommendations