Journal of Materials Science

, Volume 44, Issue 17, pp 4604–4612 | Cite as

Finite element simulation of complex interfacial segregation phenomena in dilute alloys

  • F. TancretEmail author
  • F. Fournier Dit Chabert
  • F. Christien
  • R. Le Gall


Segregation of trace elements on a surface, at grain boundaries or more generally in any interface can have important consequences: adhesion of thin films, catalytic activity, embrittlement of steels by P or of nickel alloys by S, reinforcement of nickel alloys by B, etc. Segregation kinetics can be simulated by a finite element (FE) approach, by implementing the Darken–Du Plessis equation at the interface and Fick’s diffusion laws in the bulk. It is then possible to simulate segregation kinetics in non-isothermal conditions, and to couple segregation and macroscopic heat transfer calculations. A previously developed model is here adapted to the case of complex interfacial segregation phenomena: (i) segregation of a single species with a solute–solute or solute–solvent interaction, (ii) co-segregation of two species with a site competition in the interface, and (iii) segregation of a single species at an interface between two phases. Results are compared with available experimental data.


Finite Element Simulation Diffusion Mode Coverage Ratio Boundary Segregation Interfacial Concentration 



The authors would like to acknowledge the support extended by Snecma Services (Safran Group) for this research through the funding for the Florent Founier Dit Chabert’s PhD thesis, during which the original model was developed [6].


  1. 1.
    Cornen M (2006) Ségrégations intergranulaires d’impuretés dans le modèle Ni-S. PhD thesis, Université de Nantes, FranceGoogle Scholar
  2. 2.
    Hondros ED, Seah MP, Hofmann S, Lejček P (1996) In: Cahn RW, Haasen P (eds) Physical metallurgy, vol 2. North Holland, Amsterdam, pp 1201–1289Google Scholar
  3. 3.
    Ben Mostefa L, Saindrenan G, Solignac MP, Colin JP (1991) Acta Metall Mater 39:3111CrossRefGoogle Scholar
  4. 4.
    Guttmann M, McLean D (1977) Interfacial segregation. ASM, Metals Park, USAGoogle Scholar
  5. 5.
    Du Plessis J, Van Wyk GN (1988) J Phys Chem Solids 49:1441CrossRefGoogle Scholar
  6. 6.
    Fournier Dit Chabert F, Tancret F, Christien F, Le Gall R, Castagné JF (2007) J Mater Sci 42:9765. doi: CrossRefGoogle Scholar
  7. 7.
    Du Plessis J, Van Wyk GN (1989) J Phys Chem Solids 50:237CrossRefGoogle Scholar
  8. 8.
    Darken LS (1949) Trans AIME 180:430Google Scholar
  9. 9.
    Larere A, Guttmann M, Dumoulin P, Roques-Carmes C (1982) Acta Metall 30:685CrossRefGoogle Scholar
  10. 10.
    Saindrenan G, Le Gall R, Christien F (2002) Endommagement interfacial des métaux. Ellipses, ParisGoogle Scholar
  11. 11.
    Ben Mostefa Daho L (1990) Étude de la perte de ductilité à chaud des alliages Fe-Ni36 en relation avec les ségrégations interfaciales. PhD thesis, Université de Nantes, FranceGoogle Scholar
  12. 12.
    Ben Mostepha L, Roptin D, Saindrenan G (1990) Mater Sci Technol 6:885Google Scholar
  13. 13.
    Menyhard M (1991) Surf Sci Lett 258:L683Google Scholar
  14. 14.
    Aufray B, Cabane-Brouty F, Cabane J (1979) Acta Metall 47:1849CrossRefGoogle Scholar
  15. 15.
    Ladet J, Aufray B, Moya F (1978) Metal Sci 12:195CrossRefGoogle Scholar
  16. 16.
    Seah MP (1990) Practical surface analysis, vol 1––Auger and X-ray photoelectron spectroscopy. Wiley, New York, p 201Google Scholar
  17. 17.
    Davis LE, McDonald NC, Palmberg PW, Riach GE, Weber RE (1978) Handbook of Auger electron spectroscopy, 2nd edn. Physical Electronics Division, Perkin-Elmer Corporation, Eden PrairieGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • F. Tancret
    • 1
    Email author
  • F. Fournier Dit Chabert
    • 1
  • F. Christien
    • 1
  • R. Le Gall
    • 1
  1. 1.Université de Nantes, Nantes Atlantique Universités, Polytech’Nantes, LGMPANantes Cedex 3France

Personalised recommendations