Skip to main content
Log in

Influence of annealing on rheological and conductive behaviors of high-density polyethylene/carbon black composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simultaneous measurement on dynamic viscoelastic and conductive behaviors was carried out to investigate the effect of high temperature annealing on the properties of carbon black (CB) filled high-density polyethylene composites. The results showed that dynamic storage and loss moduli of the composites increased significantly with increasing annealing time, and there existed a liquid- to solid-like transition at a critical time (tc) which is dependent on temperature and CB content. Accompanying with the variation in dynamic moduli, electrical resistance (R) decreased sharply with time. What’s more, the increase of R could be observed in the long time region. The activation energy determined from tc as a function of reciprocal temperature was found to be irrespective of CB content. The evolutions of moduli and R induced by thermal treatment were discussed on the base of the concept of filler flocculation in the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oono R (1977) J Appl Polym Sci 21:1743

    Article  CAS  Google Scholar 

  2. Cembrola RJ (1982) Polym Eng Sci 22:601

    Article  CAS  Google Scholar 

  3. Hess WM, Swor RA, Micek EJ (1984) Rubber Chem Technol 57:959

    Article  CAS  Google Scholar 

  4. Amin M, Nasr GM, Sobhy MS (1991) J Mater Sci 26:4615. doi:https://doi.org/10.1007/BF00612395

    Article  CAS  Google Scholar 

  5. Schwarz MK, Bauhofer W, Schulte K (2002) Polymer 43:3079

    Article  CAS  Google Scholar 

  6. Thongruang W, Spontak RJ, Balik CM (2002) Polymer 43:2279

    Article  CAS  Google Scholar 

  7. Cannon LA, Pethrick RA (2002) Polymer 43:6429

    Article  CAS  Google Scholar 

  8. Ohe K, Natio Y (1971) Jpn J Appl Phys 10:99

    Article  CAS  Google Scholar 

  9. Bohm GGA, Nguyen MN (1995) J Appl Polym Sci 55:1041

    Article  Google Scholar 

  10. Hou YH, Zhang MQ, Rong MZ, Yu G, Zeng HM (2002) J Appl Polym Sci 84:2768

    Article  CAS  Google Scholar 

  11. Hou YH, Zhang MQ, Mai KC, Rong MZ, Yu G, Zeng HM (2001) J Appl Polym Sci 80:1267

    Article  CAS  Google Scholar 

  12. Wu GZ, Asai S, Sumita M (1999) Macromolecules 32:3534

    Article  CAS  Google Scholar 

  13. Meyer J (1974) Polym Eng Sci 14:706

    Article  CAS  Google Scholar 

  14. Zhang MY, Jia WT, Chen XF (1996) J Appl Polym Sci 62:743

    Article  CAS  Google Scholar 

  15. Luo YL, Wang GC, Fang B, Zhang BY, Zhang ZP (1996) J Funct Polym 9:329

    CAS  Google Scholar 

  16. Luo YL, Wang GC, Fang B, Zhang BY, Zhang ZP (1998) Eur Polym J 34:1221

    Article  CAS  Google Scholar 

  17. Park JS, Kang PH, Nho YC, Suh DH (2003) J Appl Polym Sci 89:2316

    Article  CAS  Google Scholar 

  18. Song YH, Zheng Q (2006) J Appl Polym Sci 105:710

    Article  CAS  Google Scholar 

  19. Wu GZ, Asai S, Sumita M (2002) Macromolecules 35:1708

    Article  CAS  Google Scholar 

  20. Wu GZ, Asai S, Zhang C, Miura T, Sumita M (2000) J Appl Phys 88:1480

    Article  CAS  Google Scholar 

  21. Bar-Chaput S, Carrot C (2006) Rheologica Acta 45:339

    Article  CAS  Google Scholar 

  22. Konishi Y, Cakmak A (2006) Polymer 47:5371

    Article  CAS  Google Scholar 

  23. Zheng Q, Song YH, Wu G, Song XB (2003) J Polym Sci 41:983

    Article  CAS  Google Scholar 

  24. Wu G, Lin J, Zheng Q, Zhang MQ (2006) Polymer 47:2442

    Article  CAS  Google Scholar 

  25. Wu G, Zheng Q (2004) J Polym Sci 42:1199

    Article  CAS  Google Scholar 

  26. Wu GZ, Asai S (2000) Colloid Polym Sci 278:220

    Article  CAS  Google Scholar 

  27. Kotsikova R, Nesheva D, Krusteva E, Stavrev S (2004) J Appl Polym Sci 92:2220

    Article  CAS  Google Scholar 

  28. Payne AR (1965) J Appl Polym Sci 9:801

    Article  Google Scholar 

  29. Voet A, Cook FR (1968) Rubber Chem Technol 41:1207

    Article  CAS  Google Scholar 

  30. Liu ZH, Song YH, Zhou JF, Zheng Q (2007) J Mater Sci 42:8757. doi:https://doi.org/10.1007/s10853-007-1858-5

    Article  CAS  Google Scholar 

  31. Liu ZH, Song YH, Shangguan YG, Zheng Q (2007) J Mater Sci 42:2903. doi:https://doi.org/10.1007/s10853-007-1603-0

    Article  CAS  Google Scholar 

  32. Liu ZH, Song YH, Shangguan YG, Zheng Q (2008) J Mater Sci 43:4828. doi:https://doi.org/10.1007/s10853-008-2697-8

    Article  CAS  Google Scholar 

  33. Narkis M, Tobolsky AV (1969) J Appl Polym Sci 13:2257

    Article  CAS  Google Scholar 

  34. Narkis M, Ram A, Stein Z (1981) Polym Eng Sci 21:1049

    Article  CAS  Google Scholar 

  35. Wu G, Zheng Q, Jiang L, Song YH (2004) Chem J Chin Univ 25:357

    CAS  Google Scholar 

  36. Wu G, Song YH, Zheng Q, Du M, Zhang PJ (2003) J Appl Polym Sci 88:2160

    Article  CAS  Google Scholar 

  37. Cassagnau P, Melis F (2003) Polymer 44:6607

    Article  CAS  Google Scholar 

  38. Aranguren MI, Mora E, DeGroot JV Jr, Macosko CW (1992) J Rheol 36:1165

    Article  CAS  Google Scholar 

  39. Litvinov VM, Steeman PAM (1999) Macromolecules 32:8476

    Article  CAS  Google Scholar 

  40. Niedermeier W, Frohlich J (2003) Kautschuk Gummi Kunststoffe 56:519

    CAS  Google Scholar 

  41. Alig I, Skipa T, Lellinger D, Pötschke P (2008) Polymer 49:3524

    Article  CAS  Google Scholar 

  42. Alig I, Pötschke P, Pegel S, Dudkin SM, Lellinger D (2007) Gummi Fasern Kunstst 60:280

    CAS  Google Scholar 

  43. Alig I, Skipa T, Engel M, Lellinger D, Pegel S, Pötschke P (2007) Phys Status Solidi B 244:4223

    Article  CAS  Google Scholar 

  44. Alig I, Skipa T, Lellinger D, Bierdel M, Meyer H (2008) Phys Status Solidi B 245:2264

    Article  CAS  Google Scholar 

  45. Heinrich G, Costa FR, Abdel-Goad M, Wagenknecht U, Lauke B, Härtel V (2005) Kautsch Gummi Kunstst 58:163

    CAS  Google Scholar 

  46. Alig I, Lellinger D, Engel M, Skipa T, Pötschke P (2008) Polymer 49:1902

    Article  CAS  Google Scholar 

  47. Zhang C, Wang P, Ma CA, Wu GZ, Sumita M (2006) Polymer 47:466

    Article  CAS  Google Scholar 

  48. Katada A, Konishi Y, Isogai T, Tominaga Y, Asai S, Sumita M (2003) J Appl Polym Sci 89:1151

    Article  CAS  Google Scholar 

  49. Traina M, Pegoretti A, Penati A (2007) J Appl Polym Sci 106:2065

    Article  CAS  Google Scholar 

  50. Yi XS (2004) Function principle of filled conductive polymer composites. National Defense Industry Press, Beijing

    Google Scholar 

  51. Meier JG, Klüppel M (2008) Macromol Mater Eng 293:12

    Article  CAS  Google Scholar 

  52. Pötschke P, Fornes TD, Paul DR (2002) Polymer 43:3247

    Article  Google Scholar 

  53. Winter HH, Mours M (1997) Adv Polym Sci 134:165

    Article  CAS  Google Scholar 

  54. Won YY, Meeker SP, Trappe V, Weitz DA, Diggs NZ, Emert JI (2005) Langmuir 21:924

    Article  CAS  Google Scholar 

  55. Jäger KM, McQueen Q (1999) Kautsch Gummi Kunsts 52:734

    Google Scholar 

  56. Jäger KM, Eggen SS (2004) Polymer 45:7681

    Article  CAS  Google Scholar 

  57. Leblanc JL, Jäger KM (2006) J Appl Polym Sci 101:4071

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Nature Science Foundation of China (No. 20774085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Q., Song, Y., Liu, Z. et al. Influence of annealing on rheological and conductive behaviors of high-density polyethylene/carbon black composites. J Mater Sci 44, 4241–4245 (2009). https://doi.org/10.1007/s10853-009-3590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3590-9

Keywords

Navigation