Skip to main content
Log in

Thermal and dynamic mechanical properties of IPNS formed from unsaturated polyester resin and epoxy polyester

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The interpenetrating polymer networks (IPNs) were formed by unsaturated polyester resin (UPR) polymerized by free radical initiators: benzoyl peroxide (BPO) or cumene hydroperoxide (CHP) and epoxy polyester (EP), cured with acid anhydrides: tetrahydrophthalic anhydride (THPA) or maleic anhydride (MA). IPNs consisting 10, 30, 50, 70, 90 wt% of EP were prepared. The effect of the EP component in the IPNs and the type of curing agent on the cure behavior, thermal, and viscoelastic properties have been investigated. The results showed that both EP content and used curing system influenced on studied properties. As the EP content increased, the glass transition temperatures (T g) also increased. Moreover, higher values of tanδmax and lower values of cross-linking density in a rubbery state (νe) of IPNs containing higher EP content, probably due to plasticization effect of EP component were observed. Additionally, more heterogeneous network structure (higher values of the full-width at half-maximum (FWHM) as the EP content decreased was prepared. The thermal and viscoelastic properties of the blends cured with BPO/MA or CHP/MA system were considerably better than those cured with BPO/THPA or CHP/THPA. The higher stiffness, νe, T g and lower tanδmax values were obtained. It was probably connected with the interactions of carbon–carbon double bonds of MA with vinyl monomer (styrene), UPR and radical initiators causing to obtain more cross-linked polymer network structure. This supposition was confirmed on basis of the cure reaction monitored by DSC. The chemical interactions between two components of the blends and epoxy hardener caused that the BPO/MA or CHP/MA cure systems influenced on the cure behavior of UPR and EP components in the IPNs. The exotherm peak temperature (T max1) shifted to lower values compared to these in the neat UPR whilst T max2 shifted to higher values than in the neat EP. However, the cure behavior of the UPR was not greatly affected by the presence of EP component when BPO/THPA or CHP/THPA cure systems were used due to the lack of chemical interactions between the components and their curatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burns R (1982) Polyester molding compounds. Marcel Dekker, New York

    Google Scholar 

  2. Lubin G (ed) (1969) Handbook of fiber glass and advanced plastics composites. Van Nostrand Reinhold, New York

    Google Scholar 

  3. Riew CK, Gillham K (eds) (1984) Rubber modified thermoset resins. Advances in chemical science. American Chemical Society, Washington DC, p 208

    Google Scholar 

  4. Paul DR, Newman S (eds) (1978) Polymer blends, vol 2. Academic Press, New York

    Google Scholar 

  5. Qipeng G, Haifeng Z, Sixun Z, Yongli M, Wei Z (1999) J Mater Sci 34:123. doi:10.1023/A:1004486129169

    Article  Google Scholar 

  6. Mouritz AP, Mathys Z (1999) Compos Struct 47:643

    Article  Google Scholar 

  7. Egglestone GT, Turley DM (1994) Fire Matter 18:255

    Article  CAS  Google Scholar 

  8. Lubin G (ed) (1982) Handbook of composites. Van Nostrand, New York, p 17

    Google Scholar 

  9. Liu M-S, Liu Ch-Ch, Lee Ch-T (1999) J Appl Polym Sci 72:585

    Article  Google Scholar 

  10. Shaker ZG, Browne RM, Stretz HA, Cassidy PE, Blanda MT (2002) J Appl Polym Sci 84:2283

    Article  CAS  Google Scholar 

  11. Park SJ, Park WB, Lee JR (1999) Polym J 31:28

    Article  CAS  Google Scholar 

  12. Dinakaran K, Alagar M (2002) J Appl Polym Sci 85:2853

    Article  CAS  Google Scholar 

  13. Dinakaran K, Alagar M (2002) J Appl Polym Sci 86:2502

    Article  CAS  Google Scholar 

  14. Chou YC, Lee LJ (1994) Polym Eng Sci 34:1239

    Article  CAS  Google Scholar 

  15. Ludovic V, Hsu Ch-P (1999) Polymer 40:2059

    Article  Google Scholar 

  16. Xu MX, Xiao JS, Zhang WH, Yao KD (1994) J Appl Polym Sci 54:1659

    Article  CAS  Google Scholar 

  17. Xu MX, Liu WG, Guan YL, Bi ZP, DeYao K (1995) Polymer Int 38:205

    Article  CAS  Google Scholar 

  18. Benny CA, Abraham Beena T, Thomas TE (2006) J Appl Polym Sci 100:449

    Article  Google Scholar 

  19. Suspene L, Show Yang Y, Pascault J-P (1993) In: Keith Riew C, Kinloch AJ (eds) Rubber toughened plastics. Advances in chemistry. American Chemical Society, Washington, DC, p 168

    Google Scholar 

  20. Lin MS, Jeng KT, Huang KY, Shin YF (1993) J Polym Sci Polym Chem Ed 31:3317

    Article  CAS  Google Scholar 

  21. Sperling LH, Mishra V (1995) Polym Adv Technol 7:197

    Article  Google Scholar 

  22. Dean K, Cook WD, Zipper MD, Burchill P (2001) Polymer 42:1345

    Article  CAS  Google Scholar 

  23. Worzakowska M (2008) J Therm Anal Calorim 93:799

    Article  CAS  Google Scholar 

  24. Penczek P, Bończa-Tomaszewski Z, Bańkowska A (2002) Macromol Symp 187:243

    Article  CAS  Google Scholar 

  25. Bończa-Tomaszewski Z, Penczek P, Bańkowska A (2006) Surf Coat Int B Coat Trans 89:157

    Article  Google Scholar 

  26. Worzakowska M (2008) J Appl Polym Sci 110:3582

    Article  CAS  Google Scholar 

  27. Yang H, Lee J (2000) J Appl Polym Sci 79:1230

    Article  Google Scholar 

  28. Stevens GC (1981) J Appl Polym Sci 26:4256

    MathSciNet  Google Scholar 

  29. Park WH, Lee JK, Kwan KI (1996) Polym J 28:407

    Article  CAS  Google Scholar 

  30. Yang YS, Lee LJ (1987) Macromolecules 20:1490

    Article  ADS  CAS  Google Scholar 

  31. Jin SR, Widmaier JM, Meyer GC (1988) Polymer 29:346

    Article  CAS  Google Scholar 

  32. Ward IM (1971) Mechanical properties of solid polymer. John Wiley& Sons, London, p 77

    Google Scholar 

  33. Tobolsky AV, Carlson DW, Indicator NJ (1961) J Polym Sci 54:175

    Article  CAS  Google Scholar 

  34. Charlesworth JM (1988) Polym Eng Sci 28:230

    Article  CAS  Google Scholar 

  35. Treloar LRG (1958) The physics of rubber elasticity. Oxford University Press, London

    Google Scholar 

  36. Elliot JE, Nie J, Bowman CN (2002) Polymer 44:327

    Article  Google Scholar 

  37. Barral L, Cano J, López J, López-Bueno I, Nogueira P, Abad MJ, Ramirez C (2000) J Therm Anal Cal 60:391

    Article  CAS  Google Scholar 

  38. Shimbo M, Ochi M, Iesako H (1984) J Polym Sci Polym Phys Edn 22:1461

    CAS  Google Scholar 

  39. Ochi M, Iesako H, Nakajima S, Shimbo M (1984) J Polym Sci Polym Phys Edn 24:251

    Article  Google Scholar 

  40. Fox TG, Loshaek S (1955) J Polym Sci 15:371

    Article  CAS  Google Scholar 

  41. Bicerano J, Sammler RL, Carriere CJ, Seitz JT (1996) J Polym Sci B: Polym Phys 34:2247

    Article  CAS  Google Scholar 

  42. Zheng H, Zheng S, Guo Q (1997) J Polym Sci Polym Chem Ed 35:3161

    Article  CAS  Google Scholar 

  43. Cook WD, Forsythe JS, Scott TF, Quay-Thevenon S (2004) J Appl Polym Sci 93:1348

    Article  CAS  Google Scholar 

  44. Simon GP, Allen PEM, Wiliams DRG, Cook WD (1991) Polymer 32:2577

    Article  CAS  Google Scholar 

  45. Allen PEM, Wiliams DRG, Clayton AB (1994) Eur Polym J 30:427

    Article  CAS  Google Scholar 

  46. Kannurpatti AR, Anseth JW, Bowman CN (1998) Polymer 39:2507

    Article  CAS  Google Scholar 

  47. Park WH, Lenz RW, Goodwin S (1999) Polym Degrad Stabil 63:287

    Article  CAS  Google Scholar 

  48. Grassie N, Murry EJ, Holmes PA (1984) Polym Degrad Stabil 6:95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Worzakowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worzakowska, M. Thermal and dynamic mechanical properties of IPNS formed from unsaturated polyester resin and epoxy polyester. J Mater Sci 44, 4069–4077 (2009). https://doi.org/10.1007/s10853-009-3587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3587-4

Keywords

Navigation