Skip to main content
Log in

Facile preparation of Chaetomorpha antennina based porous polysaccharide–PMMA hybrid material by radical polymerization under microwave irradiation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A hybrid material was prepared from the hot water soluble sulphated polysaccharide of the green seaweed Chaetomorpha antennina (CMsps) and polymethyl methacrylate (PMMA) by radical polymerization in aqueous medium under microwave irradiation. An insoluble material was formed with the progress of the polymerization. The product was characterized by the IR spectrum and elemental analysis, as well as by acid hydrolysis followed by mass spectrum of the hydrolysate of the hybrid CMsps–PMMA for confirming the insertion of PMMA. Comprehensive characterization of the product included TGA, XRD, ESI-MS and BET surface analysis. The hybrid material was porous, and formed gel in water–DMSO mixture. It had the crystallinity index of 0.122, and had BET pore diameter of 3.71 nm, a size which is far larger than the molecular diameters of common natural gases and zeolites (0.5–1.0 nm). This material may be useful in the domain of certain adsorption and catalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Crescenzi V, Paradossi G, Desideri P, Dentini M, Cavalieri F, Honici E (1997) Polym Gels Netw 5:225

    Article  CAS  Google Scholar 

  2. Kaneko Y, Kadokawa J (2005) Chem Rec 5:36

    Article  PubMed  CAS  Google Scholar 

  3. Hoffmann H, Kästner U, Dönges R, Ehrler R (1996) Polym Gels Netw 4:509

    Article  Google Scholar 

  4. Kobayashi K, Tsuchida A, Usui T, Akaike T (1997) Macromolecule 30:2016

    Article  ADS  CAS  Google Scholar 

  5. Van Dijk-Wolthuis WNE, Kettenen-Vanden Bosch JJ, Van der Kerkvan Hoof A, Hennink WE (1977) Macromolecules 30:3411

    Article  Google Scholar 

  6. Kaneko Y, Beppu K, Kadokawa J (2008) Macromol Chem Phys 209:1037

    Article  CAS  Google Scholar 

  7. Kadokawa J, Nakamura Y, Sasaki Y, Kaneko Y, Nishikawa T (2008) Polym Bull 60:57

    Article  CAS  Google Scholar 

  8. Prasad K, Meena R, Siddhanta AK (2006) J Appl Polym Sci 101:161

    Article  CAS  Google Scholar 

  9. Meena R, Prasad K, Siddhanta AK (2006) J Appl polym Sci 102:5144

    Article  CAS  Google Scholar 

  10. Kennedy JP, Fenyvesi G, Keszler B, Rosenthal KS (2003) ACS Symp Ser ACS Washington 833:290

    CAS  Google Scholar 

  11. Lee YM, Kimt SH, Kimt SJ (1996) Polymer 37:5897

    Article  Google Scholar 

  12. Hwang D, Damodaran S (1996) J Appl Polym Sci 62:1285

    Article  CAS  Google Scholar 

  13. Prasad K, Mehta G, Meena R, Siddhanta AK (2006) J Appl Polym Sci 102:3654

    Article  CAS  Google Scholar 

  14. Ramaraj B, Radhakrishnan G (1994) J Appl Polym Sci 52:837

    Article  CAS  Google Scholar 

  15. Cerrai P, Guerra GD, Tricoli M, Maltinti S, Barbani N, Petarca L (1996) Macromol Chem Phys 197:3567

    Article  CAS  Google Scholar 

  16. Chavasit V, Kienzle-Sterzer C, Torres JA (1988) Polym Bull 19:223

    Article  CAS  Google Scholar 

  17. Rao EV, Ramana KS (1991) Carbohydr Res 217:163

    Article  PubMed  CAS  Google Scholar 

  18. Sharma JP, Sekhon SS (2006) Mater Sci Eng B 129:104

    Article  CAS  Google Scholar 

  19. Liu D, Zhou X, Zhong R, Nannan Y, Chang G, Xiong W, Mei X, Lin B (2006) Talanta 68:616

    Article  PubMed  CAS  Google Scholar 

  20. Li S, Hu J, Liu B (2004) Biosystems 77:25

    Article  PubMed  CAS  Google Scholar 

  21. Kim SB, Kim YJ, Yoon TL, Park SA, Cho IH, Kim EJ, Kim IA, Shin J-W (2004) Biomaterials 25:5715

    Article  PubMed  CAS  Google Scholar 

  22. Stańczyk M (2005) J Biomech 38:1397

    Article  PubMed  Google Scholar 

  23. Tambe NS, Bhushan B (2005) Ultramicroscopy 105:238

    Article  CAS  Google Scholar 

  24. Siddhanta AK, Goswami AM, Ramavat BK, Mody KH, Mairh OP (2001) Indian J Mar Sci 30:166

    CAS  Google Scholar 

  25. Jackson AT, Slade SE, Scrivens JH (2004) Int J Mass Spectrom 238:265

    Article  CAS  Google Scholar 

  26. Murakami M, Kaneko Y, Kadokawa J (2007) Carbohydr Polym 69:378

    Article  CAS  Google Scholar 

  27. Herman PH, Weidinger A (1948) J Appl Phys 19:491

    Article  ADS  Google Scholar 

  28. Morris ER, Rees DA, Sanderson GR, Thom D (1975) Chem Soc Perkin Trans 2:1418

    Article  Google Scholar 

  29. Morris ER, Rees DA, Thom D (1980) Carbohydr Res 81:305

    Article  CAS  Google Scholar 

  30. Dentini M, Rinaldi G, Barbetta A, Risica D, Skjak-Bræk G (2006) Carbohydr Polym 63:519

    Article  CAS  Google Scholar 

  31. McReynolds KD, Gervay-Hague J (2000) Tetrahedron Asymmetry 11:337

    Article  CAS  Google Scholar 

  32. Yuejin Li, Armor JN (1992) US Patent 5149512

  33. Sloan ED (1998) Energy Fuels 12:191

    Article  CAS  Google Scholar 

  34. Szotak R (1993) Technical Report OSTI, ID-6776784, Georgia Tech Res Institute, Atlanta, GA, USA (www.osti.gov/energycitations)

Download references

Acknowledgements

The award of a Research Fellowship to GP, by the Ministry of Earth Sciences (MoES), New Delhi, is gratefully acknowledged (Sanction No. MoES/9-DS/1/96-PC-IV; dated March 18, 2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Siddhanta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, G., Prasad, K., Meena, R. et al. Facile preparation of Chaetomorpha antennina based porous polysaccharide–PMMA hybrid material by radical polymerization under microwave irradiation. J Mater Sci 44, 4062–4068 (2009). https://doi.org/10.1007/s10853-009-3586-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3586-5

Keywords

Navigation