Skip to main content
Log in

Organic–inorganic hybrid mesoporous monoliths for selective discrimination and sensitive removal of toxic mercury ions

  • Mesostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The selective optical sensing is attracting strong interest due to the use of “low-tech” spectroscopic instrumentation to detect relevant chemical species in biological and environmental processes. Our development has focused on tailoring specific solid mesoporous monoliths to be used as highly sensitive solid sensors for simple and simultaneous naked-eye detection and removal processes of extremely toxic heavy metal ions such as mercury ions in aquatic samples. The methods are emerging to design optical disc-like sensors by the immobilisation two different organic groups; however, the first organic moiety can enhance the polarity of the inorganic mesoporous disc-like monoliths “additional agents” and the second one can act as a recognition center “probe”. The latter one such as tetraphenylporphine tetrasulfonic acid (TPPS) probe led to facile handling of signal read-out with visual detection of ultra-trace concentrations of mercury ions at the same frequency as the human eye. The facile signaling was quantitatively evident using simple spectrophotometric techniques to indicate the TPPS–Hg(II) ion binding events. Control sensing assays of Hg(II) ions such as contact-time “signal response time”, thickness of support-based sensor, reaction temperature, and pH were established for achieving enhanced signal response and color intensities. Based on our results, these new classes of optical cage sensors exhibited long-term stability of recognition and signaling functionalities of Hg(II) ions that in general provided extraordinary sensitivity, selectivity, reusability, and fast kinetic detection and quantification of Hg(II) ions in our environment.

Graphical Abstract

A successful design of organic–inorganic disc-like sensor monoliths show advanced features of a further control of the sensing assay that can be governed by facile handling of signal read-out optical measurements at trace levels (~10−9 mol/dm3) of Hg(II) ions in fast response time (1 min).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Miyawaki A, Lopis J, Helm R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Nature 388:882

    Article  CAS  Google Scholar 

  2. Oehme I, Wolfbeis OS (1997) Mikrochim Acta 126:177

    Article  CAS  Google Scholar 

  3. Buhlmann P, Pretsch E, Bakker E (1998) Chem Rev 98:1593

    Article  Google Scholar 

  4. Keith LH, Gron LU, Young JL (2007) Chem Rev 107:2695

    Article  CAS  Google Scholar 

  5. Spichiger-Keller US (1998) Chemical sensors and biosensors for medical and biological applications. Wiley-VCH, Weinheim, Germany

    Book  Google Scholar 

  6. Wirnsberger G, Scott BJ, Stucky GD, Wirnsberger G (2001) Chem Commun 119

  7. Nicole L, Boissiere C, Grosso D, Hesemann P, Moreau J, Sanchez C (2004) Chem Commun 2312

  8. Lee SJ, Lee SS, Lee JY, Jung JH (2006) Chem Mater 18:4713

    Article  CAS  Google Scholar 

  9. Palomares E, Vilar R, Green A, Durrant JR (2004) Adv Funct Mater 14:111

    Article  CAS  Google Scholar 

  10. Liu J, Lu Y (2004) Chem Mater 16:3231

    Article  CAS  Google Scholar 

  11. Comes M, Marcos MD, Sancenon F, Soto J, Villaescusa LA, Amoros P, Beltran D (2004) Adv Mater 16:1783

    Article  CAS  Google Scholar 

  12. Capitan-Vallvey LF, Raya CC, Lopez EL, Ramos MDF (2004) Anal Chim Acta 524:365

    Article  CAS  Google Scholar 

  13. Kalinina MA, Golubev NV, Raitman OA, Selector SL, Arslanov VV (2006) Sens Actuators B 114:19

    Article  CAS  Google Scholar 

  14. Rodman DL, Pan H, Clarier CW, Feng W, Xue ZL (2005) Anal Chem 77:3231

    Article  CAS  Google Scholar 

  15. Potyrailo AR (2006) Angew Chem Int Ed 45:702

    Article  CAS  Google Scholar 

  16. Desacalzo AB, Rurack K, Weisshoff H, Mártinez-Mánez RM, Marcos MD, Amoros P, Hoffmann K, Soto J (2005) J Am Chem Soc 127:184

    Article  CAS  Google Scholar 

  17. El-Safty SA, Hanaoka T (2004) Chem Mater 16:384

    Article  CAS  Google Scholar 

  18. El-Safty SA, Evans J (2002) J Mater Chem 12:117

    Article  CAS  Google Scholar 

  19. El-Safty SA, Hanaoka T (2003) Adv Mater 15:1893

    Article  CAS  Google Scholar 

  20. El-Safty SA, Hanaoka T (2003) Chem Mater 15:2892

    Article  CAS  Google Scholar 

  21. Melosh NA, Lipic P, Bates FS, Wudl F, Stucky GD, Fredrickson CH, Chmelka BF (1999) Macromolecules 32:4332

    Article  CAS  Google Scholar 

  22. Melosh NA, Davidson P, Feng P, Pin DJ, Chmelka BF (2000) J Am Chem Soc 122:823

    Article  CAS  Google Scholar 

  23. Lu Y, Yang Y, Sellinger A, Lu M, Huang J, Fan H, Haddad R, Lopez G, Burns AR, Sasaki DY, Shelnutt J, Brinker CJ (2001) Nature 410:913

    Article  CAS  Google Scholar 

  24. El-Safty SA (2008) J Colloid Interface Sci 319:477

    Article  CAS  Google Scholar 

  25. El-Safty SA, Kiyozumi Y, Hanaoka T, Muzukami F (2008) Appl Catal A 337:121

    Article  CAS  Google Scholar 

  26. El-Safty SA, Balaji T, Matsunaga H, Hanaoka T, Muzukami F (2006) Angew Chem Int Ed 45:7202

    Article  CAS  Google Scholar 

  27. El-Safty SA, Prabhakaran D, Ismail AA, Matsunaga H, Muzukami F (2007) Adv Funct Mater 17:3731

    Article  CAS  Google Scholar 

  28. El-Safty SA, Prabhakaran D, Ismail AA, Matsunaga H, Muzukami F (2008) Chem Mater 20:2644

    Article  CAS  Google Scholar 

  29. El-Safty SA, Ismail AA, Matsunaga H, Muzukami F (2008) J Phys Chem C 112:4825

    Article  CAS  Google Scholar 

  30. Benounis M, Jaffrezic-Renault N, Halouani H, Lamartine R, Dumazet-Bonnamour I (2006) Mater Sci Eng C 26:364

    Article  CAS  Google Scholar 

  31. Harris HH, Pickering I, George GN (2003) Science 301:1203

    Article  CAS  Google Scholar 

  32. Tag K, Riedel K, Bauer HJ, Hanke G, Baronian KHR, Kunze G (2007) Sens Actuators B 122:403

    Article  CAS  Google Scholar 

  33. Kaiser G, Tolg G (1980) The handbook of environmental chemistry, vol 3, part A. Springer-Verlag, NY, pp 1–58

    Google Scholar 

  34. Feng X, Fryxell GE, Wang L-Q, Kim AY, Liu J, Kemner KM (1997) Science 276:92

    Article  Google Scholar 

  35. Metivier R, Leray I, Lebeau BD, Valeur B (2005) J Mater Chem 15:2965

    Article  CAS  Google Scholar 

  36. Balaji T, Sasidrharan M, Matsunaga H (2005) Analyst 130:1162

    Article  CAS  Google Scholar 

  37. El-Safty SA, Prabhakaran D, Kiyozumi Y, Mizukami F (2008) Adv Funct Mater 18:1739

    Article  CAS  Google Scholar 

  38. El-Safty SA, Hanaoka T, Mizukami F (2005) Adv Mater 17:47–53

    Article  CAS  Google Scholar 

  39. El-Safty SA, Hanaoka T, Mizukami F (2006) Acta Mater 54:899

    Article  CAS  Google Scholar 

  40. El-Safty SA, Kiyozumi Y, Hanaoka T, Mizukami F (2008) J Phys Chem 112:5476

    CAS  Google Scholar 

  41. Liu AM, Hidajat K, Kawi S, Zhao DY (2000) Chem Commun 1145

  42. Engelhardt G, Michel D (1987) High resolution solid-state NMR of silicates and zeolites. John Wiely and Sons, New York

    Google Scholar 

  43. Liu Y-H, Lin H-P, Mou C-H (2004) Langmuir 20:3231

    Article  CAS  Google Scholar 

  44. El-Safty SA, Mizukami F, Hanaoka T (2005) J Phys Chem B 109:9255

    Article  CAS  Google Scholar 

  45. El-Safty SA, Hanaoka T, Mizukami F (2005) Chem Mater 17:3137

    Article  CAS  Google Scholar 

  46. Kruk M, Jaroniec M (2003) Chem Mater 15:2942

    Article  CAS  Google Scholar 

  47. Coronado E, Galán-Mascarós JR, Martí-Gastaldo C, Palomares E, Durrant JR, Vilar R, Gratzel M, Nazeeruddin MdK (2005) J Am Chem Soc 127:12351

    Article  CAS  Google Scholar 

  48. Han MS, Kim DH (2002) Angew Chem Int Ed 41:3809

    Article  CAS  Google Scholar 

  49. Miyaji H, Sato W, Sessler JL (2000) Angew Chem Int Ed 39:1777

    Article  CAS  Google Scholar 

  50. Rex M, Hernandez FE, Campiglia AD (2006) Anal Chem 78:445

    Article  CAS  Google Scholar 

  51. El-Safty SA, Ismail AA, Matsunaga H, Muzukami F (2007) Chem Eur J 13:9245

    Article  CAS  Google Scholar 

  52. Liu J, Lu Y (2004) J Am Chem Soc 126:12298

    Article  CAS  Google Scholar 

  53. Sandell EB (1959) Colorimetric determination of traces of metals, 3rd edn. Interscience Publisher INC, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif A. El-Safty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Safty, S.A. Organic–inorganic hybrid mesoporous monoliths for selective discrimination and sensitive removal of toxic mercury ions. J Mater Sci 44, 6764–6774 (2009). https://doi.org/10.1007/s10853-009-3577-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3577-6

Keywords

Navigation