Skip to main content
Log in

Surface properties and epoxidation catalytic activity of Ti-SBA15 prepared by direct synthesis

  • Mesostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of hydrothermal treatment time on the physicochemical properties and the catalytic activity in cyclohexene epoxidation of titanium-substituted SBA15 silicas prepared by direct one-step synthesis was systematically studied using a combination of N2 physisorption at −196 °C, X-ray diffraction, X-ray photoelectron spectroscopy, diffuse reflectance UV–Vis, and elemental analysis. The other synthesis parameters were chosen to illustrate the different chemical environments of the titanium species formed before, during, and after the precipitation of anatase TiO2. At the beginning of hydrothermal treatment, results showed that the titanium species are homogeneously dispersed in the silica framework. When anatase TiO2 clusters precipitate, they do so mainly on the external surface of the mesoporous material. At higher hydrothermal treatment times, the material showed a decreased catalytic activity even if essentially no variation in their specific surface area was then observed. This lower activity was shown to be due to a partial coverage of active tetrahedral Ti species by extraframework higher coordination TiO2 deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Taramasso M, Perego G, Notari B (1983) US Patent 4 410 501

  2. Lam Shamleen KK (1985) US Patent 4 623 526; (1985) US Patent 4 519 998; (1984) European Patent B1 0 148 038

  3. Reddy JS, Kumar R, Ratnasamy P (1990) Appl Catal 58:L1

    Article  CAS  Google Scholar 

  4. Reddy JS, Kumar R (1991) J Catal 130:440

    Article  CAS  Google Scholar 

  5. Notari B (1996) Adv Catal 41:253

    CAS  Google Scholar 

  6. Gallot JE, Kaliaguine S (1998) Can J Chem Eng 76:833

    Article  CAS  Google Scholar 

  7. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  8. Huo QS, Margolese DI, Ciesla U, Demuth DG, Feng PY, Gier TE, Sieger P, Firouzi A, Chmelka BF, Schuth F, Stucky GD (1994) Chem Mater 6:1176

    Article  CAS  Google Scholar 

  9. Wan Y, Shi YF, Zhao D (2007) Chem Commun 897

  10. Wan Y, Zhao D (2007) Chem Rev 107:2821

    Article  CAS  Google Scholar 

  11. Soler-Illia GJAA, Sanchez C, Lebeau B, Patarin J (2002) Chem Rev 102:4093

    Article  CAS  Google Scholar 

  12. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548

    Article  CAS  Google Scholar 

  13. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024

    Article  CAS  Google Scholar 

  14. Khodakov AY, Zholobenko VL, Bechara R, Durant D (2005) Micropor Mesopor Mater 79:29

    Article  CAS  Google Scholar 

  15. Linssen T, Cassiers K, Cool P, Vansant EF (2003) Adv Colloid Interface Sci 103:121

    Article  CAS  Google Scholar 

  16. On DT, Desplantier-Giscard D, Danumah C, Kaliaguine S (2003) Appl Catal A 253:543

    Article  CAS  Google Scholar 

  17. Taguchi A, Schüth F (2005) Micropor Mesopor Mater 77:1

    Article  CAS  Google Scholar 

  18. Corma A (1997) Chem Rev 97:2373

    Article  CAS  Google Scholar 

  19. Moller K, Bein T (1998) Chem Mater 10:2950

    Article  CAS  Google Scholar 

  20. Arends IWCE, Sheldon RA (2001) Appl Catal A 212:175

    Article  CAS  Google Scholar 

  21. Fryxell GE (2006) Inorg Chem Commun 9:1141

    Article  CAS  Google Scholar 

  22. Oye G, Glomm WR, Vralstad T, Volden S, Magnusson H, Stocker M, Sjoblom J (2003) Adv Colloid Interface Sci 123:17

    Google Scholar 

  23. Ungureanu A, On DT, Dimitriu E, Kaliaguine S (2003) Appl Catal A 254:203

    Article  CAS  Google Scholar 

  24. Dubé D, Royer S, On DT, Béland F, Kaliaguine S (2005) Micropor Mesopor Mater 79:137

    Article  CAS  Google Scholar 

  25. Wu P, Iwamoto MJ (1998) Chem Soc Faraday Trans 94:2871

    Article  CAS  Google Scholar 

  26. Chiker F, Nogier JP, Launay F, Bonardet JL (2003) Appl Catal A 243:309

    Article  CAS  Google Scholar 

  27. Widenmeyer M, Grasser S, Köhler K, Anwander R (2001) Micropor Mesopor Mater 44–45:327

    Article  Google Scholar 

  28. Kim MJ, Chang SH, Choi JS, Ahn WS (2004) React Kinet Catal Lett 82:27

    Article  CAS  Google Scholar 

  29. Luan Z, Maes EM, van der Heide PAW, Zhao D, Czernuszewicz RS, Kevan L (1999) Chem Mater 11:3680

    Article  CAS  Google Scholar 

  30. Brutchey RL, Mork BV, Sirbuly DJ, Yang P, Tilley TD (2005) J Mol Catal A 238:1

    Article  CAS  Google Scholar 

  31. Ferreira P, Gonçalves IS, Kühn FE, Pillinger M, Rocha J, Santos AM, Thursfield A (2000) Eur J Inorg Chem 551

  32. Pérez Y, Pérez Quintanilla D, Fajardo M, Sierra I, del Hierro I (2007) J Mol Catal A 271:227

    Article  CAS  Google Scholar 

  33. Oldroyd RD, Thomas JM, Maschmeyer T, MacFaul PA, Snelgrove DW, Ingold KU, Wayner DDM (1996) Angew Chem Int Ed 35:2787

    Article  CAS  Google Scholar 

  34. Blasco T, Corma A, Navarro MT, Pérez Pariente J (1995) J Catal 156:65

    Article  CAS  Google Scholar 

  35. Koyano KA, Tatsumi T (1997) Micropor Mater 10:259

    Article  Google Scholar 

  36. Maschmeyer T, Rey F, Sankar G, Thomas JM (1995) Nature 387:159

    Article  Google Scholar 

  37. Koyano KA, Tatsumi T (1996) Chem Commun 145

  38. Corma A, Kan Q, Rey F (1998) Chem Commun 579

  39. Morey M, Davidson A, Stucky G (1996) Micropor Mater 6:99

    Article  CAS  Google Scholar 

  40. Morey MS, O’Brien S, Schwarz S, Stucky GD (2000) Chem Mater 12:898

    Article  CAS  Google Scholar 

  41. Zhang W, Fröba M, Wang J, Tanev PT, Wong J, Pinnavaia TJ (1996) J Am Chem Soc 118:9164

    Article  CAS  Google Scholar 

  42. Tuel A (1999) Micropor Mesopor Mater 27:151

    Article  CAS  Google Scholar 

  43. Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Science 269:1242

    Article  Google Scholar 

  44. Bagshaw SA, Di Renzo F, Fajula F (1996) Chem Commun 2209

  45. Bagshaw SA, Kemmitt T, Milestone NB (1998) Micropor Mesopor Mater 22:419

    Article  CAS  Google Scholar 

  46. Ji D, Ren T, Yan L, Suo J (2003) Mater Lett 57:4474

    Article  CAS  Google Scholar 

  47. Ji D, Zhao R, Lv G, Qian G, Yan L, Suo J (2005) Appl Catal A 281:39

    Article  CAS  Google Scholar 

  48. Vinu A, Srinivasu P, Sawant DP, Alam S, Mori T, Ariga K, Balasubramanian VV, Anand C (2008) Micropor Mesopor Mater 110:422

    Article  CAS  Google Scholar 

  49. Zhang WH, Lu J, Han B, Li M, Xiu J, Ying P, Li C (2002) Chem Mater 14:3413

    Article  CAS  Google Scholar 

  50. Newalkar BL, Olanrewaju J, Komarneni S (2001) Chem Mater 13:552

    Article  CAS  Google Scholar 

  51. Wu S, Han Y, Zou YC, Song JW, Zhao L, Di Y, Liu SZ, Xiao FS (2004) Chem Mater 16:486

    Article  CAS  Google Scholar 

  52. Berube F, Kleitz F, Kaliaguine S (2008) J Phys Chem C 112:14403

    Article  CAS  Google Scholar 

  53. Vinu A, Srinivasu P, Miyahara M, Ariga K (2006) J Phys Chem B 110:801

    Article  CAS  Google Scholar 

  54. Chen Y, Huang Y, Xiu J, Han X, Bao X (2004) Appl Catal A 273:185

    Article  CAS  Google Scholar 

  55. Trukhan NN, Romannikov VN, Shmakov AN, Vanina MP, Paukshtis EA, Bukhtiyarov VI, Kriventsov VV, Danilov IY, Kholdeeva OA (2003) Micropor Mesopor Mater 59:73

    Article  CAS  Google Scholar 

  56. Ravikovitch PI, Neimark AV (2001) J Phys Chem B 105:6817

    Article  CAS  Google Scholar 

  57. Hua Z, Bu W, Lian Y, Chen H, Li L, Zhang L, Li C, Shi J (2005) J Mater Chem 15:661

    Article  CAS  Google Scholar 

  58. Galarneau A, Cambon H, Di Renzo F, Fajula F (2001) Langmuir 17:8328

    Article  CAS  Google Scholar 

  59. Ryoo R, Ko CH, Kruk M, Antochshuk V, Jaroniec M (2000) J Phys Chem B 104:11465

    Article  CAS  Google Scholar 

  60. Hoang VT, Huang Q, Eic M, Do TO, Kaliaguine S (2005) Langmuir 21:2051

    Article  CAS  Google Scholar 

  61. Gobin OC, Wan Y, Zhao D, Kleitz F, Kaliaguine S (2007) J Phys Chem C 111:3053

    Article  CAS  Google Scholar 

  62. Geobaldo CF, Bordiga S, Zecchina A, Giamello E, Leofanti G, Petrini G (1992) Catal Lett 16:109

    Article  CAS  Google Scholar 

  63. On DT, Le Noc L, Bonneviot L (1996) Chem Commun 299

  64. On DT, Kapoor MP, Kaliaguine S (1996) Chem Commun 1161

  65. Tozzola G, Mantegazza MA, Ranghino G, Petrini G, Bordiga S, Ricchiardi G, Lamberti C, Zulian R, Zecchina A (1998) J Catal 179:64

    Article  CAS  Google Scholar 

  66. Deo G, Turek AM, Wachs IE, Huybrechts DRC, Jacobs PA (1993) Zeolites 13:365

    Article  CAS  Google Scholar 

  67. Stakheev AY, Shpiro ES, Apijok J (1993) J Phys Chem 97:5663

    Article  Google Scholar 

  68. Kaliaguine S (1996) Stud Surf Sci Catal 102:191

    Article  CAS  Google Scholar 

  69. Notari B (1988) Stud Surf Sci Catal 37:413

    Article  CAS  Google Scholar 

  70. Klein S, Thorimbert S, Maier WF (1996) J Catal 163:476

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank NSERC for financial support. The authors are grateful to Mr. G. Lemay for assistance in the experimental part. We thank Professor M. Leclerc from the Chemistry Department of Laval University for access to UV–Vis spectrometer. We also thank Dr A. Adnot for XPS measurements and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Kaliaguine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bérubé, F., Kleitz, F. & Kaliaguine, S. Surface properties and epoxidation catalytic activity of Ti-SBA15 prepared by direct synthesis. J Mater Sci 44, 6727–6735 (2009). https://doi.org/10.1007/s10853-009-3566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3566-9

Keywords

Navigation