Skip to main content
Log in

Evaluation and visualization of the percolating networks in multi-wall carbon nanotube/epoxy composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, epoxy-based nanocomposites containing multi-wall carbon nanotubes (CNTs) were produced by a calendering approach. The electrical conductivities of these composites were investigated as a function of CNT content. The conductivity was found to obey a percolation-like power law with a percolation threshold below 0.05 vol.%. The electrical conductivity of the neat epoxy resin could be enhanced by nine orders of magnitude, with the addition of only 0.6 vol.% CNTs, suggesting the formation of a well-conducting network by the CNTs throughout the insulating polymer matrix. To characterize the dispersion and the morphology of CNTs in epoxy matrix, different microscopic techniques were applied to characterize the dispersion and the morphology of CNTs in epoxy matrix, such as atomic force microscopy, transmission electron microscopy, and scanning electron microscopy (SEM). In particular, the charge contrast imaging in SEM allows a visualization of the overall distribution of CNTs at a micro-scale, as well as the identification of CNT bundles at a nano-scale. On the basis of microscopic investigation, the electrical conduction mechanism of CNT/epoxy composites is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ijima S, Ichihashi T (1993) Nature 363:603

    Article  ADS  Google Scholar 

  2. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787

    Article  PubMed  ADS  CAS  Google Scholar 

  3. Thostenson ET, Ren ZF, Chou TW (2001) Compos Sci Technol 61:1899

    Article  CAS  Google Scholar 

  4. Andrews R, Weisenberger MC (2004) Curr Opin Solid State Mater Sci 8:31

    Article  CAS  Google Scholar 

  5. Colbert DT (2003) Plast Addit Compound 5:18

    CAS  Google Scholar 

  6. Das N, Maiti S (2008) J Mater Sci 43:1920. doi:10.1007/s10853-008-2458-8

    Article  ADS  CAS  Google Scholar 

  7. Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor and Francis, London

    Google Scholar 

  8. Weber M, Kamal MR (1997) Polym Compos 18:711

    Article  CAS  Google Scholar 

  9. Kirkpatrick S (1973) Rev Mod Phys 45:574

    Article  ADS  Google Scholar 

  10. Heo SI, Yun JC, OH KS, Han KS (2006) Adv Compos Mater 15:115

    Article  CAS  Google Scholar 

  11. Balberg I, Anderson CH, Alexander S, Wagner N (1984) Phys Rev B 30:3933

    Article  ADS  Google Scholar 

  12. Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, Mareche JF (1996) Phys Rev B 53:6209

    Article  ADS  CAS  Google Scholar 

  13. Dani A, Ogale AA (1996) Compos Sci Technol 56:911

    Article  CAS  Google Scholar 

  14. Lu C, Mai YW (2008) J Mater Sci 43:6012. doi:10.1007/s10853-008-2917-2

    Article  ADS  CAS  Google Scholar 

  15. Balberg I, Binenbaum N (1983) Phys Rev B 28:3799

    Article  ADS  Google Scholar 

  16. Mclachlan DS, Chiteme C, Park C, Wise KE (2005) J Polym Sci B 43:3273

    Article  CAS  Google Scholar 

  17. Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Compos Sci Technol 67:922

    Article  CAS  Google Scholar 

  18. Sandler J, Shaffer MP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Polymer 40:5967

    Article  CAS  Google Scholar 

  19. Sandler J, Kirk JE, Kinloch IA, Shaffer MP, Windle AH (2003) Polymer 44:5893

    Article  CAS  Google Scholar 

  20. Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C (2003) Macromolecules 36:5187

    Article  ADS  CAS  Google Scholar 

  21. Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004) Compos Sci Technol 64:2309

    Article  CAS  Google Scholar 

  22. Kim YJ, Shin TS, Choi HD, Kwon JH, Chung YC, Yoon HG (2005) Carbon 43:23

    Article  Google Scholar 

  23. Thostenson ET, Chou TW (2006) Carbon 44:3022

    Article  CAS  Google Scholar 

  24. Ionescu E, Francis A, Riedel R (2009) J Mater Sci 44:2055. doi:10.1007/s10853-009-3304-3

    Article  ADS  CAS  Google Scholar 

  25. Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Adv Mater 17:1186

    Article  CAS  Google Scholar 

  26. Kanetoa K, Tsurutaa M, Sakaia G, Chob WY, Andob Y (1999) Synth Met 103:2543

    Article  Google Scholar 

  27. Gojny FH, Wichmann MHG, Fiedler B, Kinloch I, Bauhofer W, Windle AH, Schulte K (2006) Polymer 47:2036

    Article  CAS  Google Scholar 

  28. Loos J, Alexeev A, Grossiord N, Koning C, Regev O (2005) Ultramicroscopy 104:160

    Article  PubMed  CAS  Google Scholar 

  29. Zhang HB, Feng RJ, Ura K (2004) Sci Prog 87:249

    Article  PubMed  CAS  Google Scholar 

  30. Dalmas F, Dendievel F, Chazeau L, Cavaille JY, Gauthier C (2006) Acta Mater 54:2923

    Article  CAS  Google Scholar 

  31. Sheng P, Sichel EK, Gittleman JI (1978) Phys Rev Lett 40:1197

    Article  ADS  CAS  Google Scholar 

  32. Balberg I (1987) Phys Rev Lett 59:1305

    Article  PubMed  ADS  CAS  Google Scholar 

  33. Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS (2003) Compos Sci Technol 63:1637

    Article  CAS  Google Scholar 

  34. Hu G, Zhao C, Zhang S, Yang M, Wang Z (2006) Polymer 47:480

    Article  CAS  Google Scholar 

  35. Kilbride BE, Coleman JN, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, Blau WJ (2002) J Appl Phys 92:4024

    Article  ADS  CAS  Google Scholar 

  36. Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Polymer 45:8863

    Article  Google Scholar 

  37. Tsotra P, Friedrich K (2003) Compos A Appl S 34:75

    Article  Google Scholar 

  38. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Macromolecules 37:9045

    ADS  Google Scholar 

  39. Aggarwal M, Khan S, Husain M, Ming TC, Tsai MY, Perng TP, Khan ZH (2007) Eur Phys J B 60:319

    Article  ADS  CAS  Google Scholar 

  40. Schueler R, Petermann J, Schulte K, Wentzel HP (1997) J Appl Polym Sci 63:1741

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the IVW GmbH (CEO: Prof. Dr.-Ing. A. K. Schlarb) where most of the results were generated. The authors also acknowledge the help of the technicians, H. Gietzsch and S. Schmitt at the IVW, GmbH. L. Chang wishes to thank the Alexander von Humboldt-Foundation for the research fellowship at IVW during the year 2008, P. Toro appreciates the support of DAAD for his stay at IVW in 2006, and K. Friedrich is grateful to the Australian Research Council for his Professional Fellowship at the University of Sydney in 2006/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, L., Friedrich, K., Ye, L. et al. Evaluation and visualization of the percolating networks in multi-wall carbon nanotube/epoxy composites. J Mater Sci 44, 4003–4012 (2009). https://doi.org/10.1007/s10853-009-3551-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3551-3

Keywords

Navigation