Skip to main content
Log in

Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study discusses the possibility of using the corona (electric discharge at atmospheric pressure) treatment for fiber surface activation that can facilitate the loading of Ag nanoparticles (NPs) from colloids onto the polyester and polyamide fabrics and thus enhance their antifungal activity against Candida albicans. The laundering durability of achieved effects and the influence of dyeing of fabrics with disperse dyes on their antifungal efficiency were studied. The morphology of fibers loaded with Ag nanoparticles was characterized by SEM whereas X-ray photoelectron spectroscopy was used for the evaluation of surface chemical changes. Corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles showed better antifungal properties compared to untreated fabrics. The advantage of corona treated fabrics became even more prominent after washing test, particularly for polyester fabrics. Antifungal efficiency of polyester and polyamide fabrics loaded with Ag nanoparticles were almost unaffected by dyeing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pohle D, Damm C, Neuhof J, Roesch A, Münstedt H (2001) Polym Compos 15:357

    Google Scholar 

  2. Morris CE, Welch CM (1983) Textile Res J 53:725

    Article  CAS  Google Scholar 

  3. Nakashima T, Sakagami Y, Ito H, Matsuo M (2001) Textile Res J 71:688

    CAS  Google Scholar 

  4. Yuranova T, Rincon AG, Bozzi A, Parra S, Pulgarin C, Albers P, Kiwi J (2003) J Photochem Photobiol A 161:27

    Article  CAS  Google Scholar 

  5. Hossain MM, Herrmann AS, Hgemann D (2006) Plasma Process Polym 3:299

    Article  CAS  Google Scholar 

  6. Hesse A, Höcker H, Umbach KH, Mecheels J (1995) Proceedings of the Harrogate meeting, Harrogate, Great Britain, IWTO, Report no. 12

  7. Ueda M, Tokino S (1996) Rev Prog Color 26:9

    CAS  Google Scholar 

  8. Bozzi A, Yuranova T, Kiwi J (2005) J Photochem Photobiol A 172:27

    Article  CAS  Google Scholar 

  9. Lee HJ, Yeo SY, Jeong SH (2003) J Mater Sci 38:2199. doi:10.1023/B:JMSC.0000017787.53545.b7

    Article  CAS  Google Scholar 

  10. Jeong SH, Hwang YH, Yi SC (2005) J Mater Sci 40:5413. doi:10.1007/s10853-005-4340-2

    Article  ADS  CAS  Google Scholar 

  11. Lee HJ, Jeong SH (2005) Textile Res J 75:551

    Article  CAS  Google Scholar 

  12. Yeo SY, Lee HJ, Jeong SH (2003) J Mater Sci 38:2143. doi:10.1023/A:1023767828656

    Article  CAS  Google Scholar 

  13. Ki HY, Kim JH, Kwon SC, Jeong SH (2007) J Mater Sci 42:8020. doi:10.1007/s10853-007-1572-3

    Article  ADS  CAS  Google Scholar 

  14. Gorenšek M, Recelj P (2007) Textile Res J 77:138

    Article  Google Scholar 

  15. Hipler UC, Elsner P, Fluhr JW (2005) J Biomed Mater Res B: Appl Biomater 77B:156

    Google Scholar 

  16. Radetić M, Ilić V, Vodnik V, Dimitrijević S, Jovančić P, Šaponjić Z, Nedeljković JM (2008) Polym Adv Technol 19:1816

    Article  Google Scholar 

  17. Vuković VV, Nedeljković JM (1993) Langmuir 9:980

    Article  Google Scholar 

  18. Šaponjić ZV, Csencsits R, Rajh T, Dimitrijević N (2003) Chem Mater 15:4521

    Article  Google Scholar 

  19. Briggs D, Seah MP (1983) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Wiley and Sons, UK

    Google Scholar 

  20. Molina R, Jovančić P, Jocić D, Bertran E, Erra P (2003) Surf Interface Anal 35:128

    Article  CAS  Google Scholar 

  21. Brack N, Lamb RN, Pham D, Turner T (1999) Surf Interface Anal 27:1050

    Article  CAS  Google Scholar 

  22. De Geyter N, Morent R, Leys C (2006) Surf Coat Technol 201:2460

    Article  Google Scholar 

  23. Pappas D, Bujanda A, Demaree JD, Hirvonen JK, Kosik W, Jensen R, McKnight S (2006) Surf Coat Technol 201:4384

    Article  CAS  Google Scholar 

  24. Molina R, Espinós JP, Yubero F, Erra P, González-Elipe AR (2005) Appl Surf Sci 252:1417

    Article  ADS  CAS  Google Scholar 

  25. Wu D, Fang Y (2003) J Colloid Interface Sci 265:234

    Article  PubMed  CAS  Google Scholar 

  26. Badr Y, Mahmoud MA (2005) J Mol Struct 749:187

    Article  ADS  CAS  Google Scholar 

  27. Damm C, Münstedt H, Rösch A (2007) J Mater Sci 42:6067. doi:10.1007/s10853-006-1158-5

    Article  ADS  CAS  Google Scholar 

  28. Shin HS, Choi HC, Jung Y, Kim SB, Song HJ, Shin HJ (2004) Chem Phys Lett 383:418

    Article  ADS  CAS  Google Scholar 

  29. Chung YC, Chen CY (2008) Bioresour Technol 99:2806

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The financial support for this study was provided by the Ministry of Science of Republic of Serbia (project 142066) and Eureka project NANOVISION E! 4043. We gratefully acknowledge M. Bokorov (University of Novi Sad, Serbia) for providing SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Radetić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilić, V., Šaponjić, Z., Vodnik, V. et al. Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci 44, 3983–3990 (2009). https://doi.org/10.1007/s10853-009-3547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3547-z

Keywords

Navigation