Skip to main content

Advertisement

Log in

Nanotubular oxide layer formation on Ti–13Nb–13Zr alloy as a function of applied potential

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanotubular oxide layer formation on biomedical grade α + β type Ti–13Nb–13Zr alloy was investigated using anodization technique as a function of applied dc potential (10–40 V) and anodizing time (30–180 min) in 1 M H3PO4 + 0.5 wt% NaF at room temperature. The as-formed and crystallized nanotubes were characterized using SEM, XRD, and TEM. There was a bimodal size distribution of nanotubes with diameters at the range of 25–110 nm. Nanotubes nucleated on β matrix exhibited uniform surface appearance with circular morphology, whereas those nucleated on α phase yielded parabolic shape. TEM/EDS analysis detected the three component elements of the alloy in the nanotube. Heat treatment significantly altered the distinct interface between the nanotubes and the barrier oxide layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kubota S, Johkura K, Asanuma K, Okouchi Y, Ogiwara N, Sasaki K, Kasuga T (2004) J Mater Sci Mater Med 15:1031

    Article  PubMed  CAS  Google Scholar 

  2. Oh SH, Finõnes RR, Daraio C, Chen LH, Jin S (2005) Biomaterials 26:4938

    Article  PubMed  CAS  Google Scholar 

  3. Masuda H, Fukuda K (1995) Science 268:1466

    Article  PubMed  ADS  CAS  Google Scholar 

  4. Gong D, Grimes CA, Varghese OK, Hu WC, Sing RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331

    Article  ADS  CAS  Google Scholar 

  5. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) Curr Opin Solid State Mater Sci 11:3

    Article  CAS  Google Scholar 

  6. Elsanousi A, Zhang J, Fadlalla HMH, Zhang F, Wang H, Ding X, Huang Z, Tang C (2008) J Mater Sci 43:7219. doi:10.1007/s10853-008-2947-9

    Article  ADS  CAS  Google Scholar 

  7. Tian T, Xiao XF, Liu RF, She HD, Hu XF (2007) J Mater Sci 42:5539. doi:10.1007/s10853-006-1104-6

    Article  ADS  CAS  Google Scholar 

  8. Allam NK, Feng XJ, Grimes CA (2008) Chem Mater 20:6477

    Article  CAS  Google Scholar 

  9. Jakubowics J (2008) Electrochem Commun 10:735

    Article  Google Scholar 

  10. Popat KC, Leoni L, Grimes CA, Desai TA (2007) Biomaterials 28:3188

    Article  PubMed  CAS  Google Scholar 

  11. Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T (2003) J Biomed Mater Res 64:164

    Article  Google Scholar 

  12. Davidson JA, Kovacs P (1992) US Patent 4,169,597

  13. Long M, Rack RJ (1998) Biomaterials 19:1621

    Article  PubMed  CAS  Google Scholar 

  14. Sumner DR, Galante JO (1992) Clin Orthoped Rel Res 274:202

    Google Scholar 

  15. Tsuchiya H, Macak JM, Ghicov A, Tang YC, Fujimoto S, Niinomi M, Noda T, Schmuki P (2006) Electrochim Acta 52:94

    Article  CAS  Google Scholar 

  16. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energy Mater Sol Cells 90:2011

    Article  CAS  Google Scholar 

  17. Zwilling V, Ceretti ED, Forveille AB (1999) Electrochim Acta 45:921

    Article  CAS  Google Scholar 

  18. Jäger M, Zilkens C, Zanger K, Krauspe R (2007) J Biomed Biotechnol 2007:1

    Article  Google Scholar 

  19. Bai J, Zhou B, Li L, Liu Y, Zheng Q, Shao J, Zhu X, Cai W, Liao J, Zou L (2008) J Mater Sci 43:1880. doi:10.1007/s10853-007-2418-8

    Article  ADS  CAS  Google Scholar 

  20. Saji VS, Choe HC (2009) Corros Sci. doi:10.1016/j.corsci.2009.04.013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Cheol Choe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saji, V.S., Choe, H.C. & Brantley, W.A. Nanotubular oxide layer formation on Ti–13Nb–13Zr alloy as a function of applied potential. J Mater Sci 44, 3975–3982 (2009). https://doi.org/10.1007/s10853-009-3542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3542-4

Keywords

Navigation