Skip to main content
Log in

Effects of Nb2O5 doping on the microstructure and the dielectric temperature characteristics of barium titanate ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, the effects of Nb2O5 addition on the dielectric properties and phase formation of BaTiO3 were investigated. A core–shell structure was formed for Nb-doped BaTiO3 resulted from a low diffusivity of Nb5+ ions into BaTiO3 when grain growth was inhibited. In the case of 0.3–4.8 mol% Nb2O5 additions, two dielectric constant peaks were observed. The Curie dielectric peak was determined by the ferroelectric-paraelectric transition of grain core, whereas the secondary broad peak at lower temperature was due to strong chemical inhomogeneity in Nb-doped BaTiO3 ceramics. The dielectric constant peak at Curie temperature was markedly depressed with the addition of Nb2O5. On the other hand, the secondary dielectric constant peak was enhanced when sintered above 1280 °C for higher Nb2O5 concentrations (≥1.2 mol%). The Curie temperature was shifted to higher temperatures, whereas the transition temperature corresponding to the secondary peak moved to lower temperatures as increasing the amount of Nb2O5 more than 1.2 mol%. The decrease of this lower transition temperature was assumed to be closely related with the secondary phase formation when Nb concentration greater than 1.2 mol%. From XRD analyses, a large amount of secondary phases was observed when Nb2O5 amount exceeded 1.2 mol%. The coefficients of thermal expansion of Nb-doped BaTiO3 were increased with increasing Nb2O5 contents, resulting in large internal stress between cores and shells. Therefore, the shift of Curie temperature to higher temperatures was attributed to internal stress resulting from the formation of a core–shell structure and a large amount of secondary phase grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Merz WJ (1953) Phys Rev 91:513

    Article  CAS  Google Scholar 

  2. Lin JN, Wu TB (1990) J Appl Phys 68:985

    Article  CAS  Google Scholar 

  3. Hennings D, Rosenstein G (1984) J Am Ceram Soc 67:249

    Article  CAS  Google Scholar 

  4. Tang B, Zhang SR, Yuan Y. J Mater Sci Mater Electron. doi:https://doi.org/10.1007/s10854-007-9477-0

    Google Scholar 

  5. Jung YS, Na ES, Paik U (2002) Mater Res Bull 37:1633

    Article  CAS  Google Scholar 

  6. Arlt G, Hennings D, de With G (1985) J Appl Phys 58:1619

    Article  CAS  Google Scholar 

  7. Uchino K, Sadanaga E, Hirose T (1989) J Am Ceram Soc 72:1555

    Article  CAS  Google Scholar 

  8. Begg BD, Vance ER, Nowotny J (1994) J Am Ceram Soc 77:3186

    Article  CAS  Google Scholar 

  9. Albertsen K, Hennings D, Steigelmann O (1998) J Electroceram 2(3):193

    Article  CAS  Google Scholar 

  10. Lee S et al (2007) J Appl Phys 101:054119

    Article  Google Scholar 

  11. Sato S, Fujikawa Y, Nomura T (2000) Am Ceram Soc Bull 79:155

    Google Scholar 

  12. Song YH, Hwang JH, Han YH (2005) Jpn J Appl Phys 44:1310

    Article  CAS  Google Scholar 

  13. Kahn M (1971) J Am Ceram Soc 54:455

    Article  CAS  Google Scholar 

  14. Cui B, Yu PF, Tian J (2007) Mater Sci Eng A 454–455:667

    Article  Google Scholar 

  15. Sahu P, Pradhan SK, De M (2004) J Alloys Compd 377:103

    Article  CAS  Google Scholar 

  16. Cont L et al (2002) Ferroelectrics 267:323

    Article  CAS  Google Scholar 

  17. Iverson BJ, Jones JL, Bowman KJ (2006) Phys B Condens Matter 385–386:581

    Article  Google Scholar 

  18. Brzozowski E, Castro MS, Foschini CR (2002) Ceram Int 28:773

    Article  CAS  Google Scholar 

  19. Chiang SK, Lee WE, Readey DW (1987) Am Ceram Soc Bull 66:1230

    Google Scholar 

  20. Thomas NW (1990) J Phys Chem Solids 51:1419

    Article  CAS  Google Scholar 

  21. Chazono H, Kishi H (2000) J Am Ceram Soc 83:101

    Article  CAS  Google Scholar 

  22. Hwang JH, Choi SK, Han YH (2001) Jpn J Appl Phys 40:4952

    Article  CAS  Google Scholar 

  23. Samara GA (1966) Phys Rev 151:378

    Article  CAS  Google Scholar 

  24. Armstrong TR, Buchanan RC (1990) J Am Ceram Soc 73:1268

    Article  CAS  Google Scholar 

  25. Buessem WR, Cross LE, Goswami AK (1966) J Am Ceram Soc 49:33

    Article  CAS  Google Scholar 

  26. Buessem WR, Cross LE, Goswami AK (1966) J Am Ceram Soc 49:36

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Y., Zhang, S.R., Zhou, X.H. et al. Effects of Nb2O5 doping on the microstructure and the dielectric temperature characteristics of barium titanate ceramics. J Mater Sci 44, 3751–3757 (2009). https://doi.org/10.1007/s10853-009-3502-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3502-z

Keywords

Navigation