Skip to main content

Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties

Abstract

Uniform spindlelike Y(OH)3 nanorod bundles were successfully prepared for the first time via a simple hydrothermal method at 200 °C for 12 h with the presence of Na2H2EDTA · 2H2O (EDTA). Scanning electron microscope (SEM) images show that the obtained Y(OH)3 spindlelike nanorod bundles have a length of about 11 μm and a diameter of about 2 μm in the middle part. The nanorod bundles are composed of numerous nanorods, and all these nanorods are orientationally aligned and grow uniformly along the bundles. The individual nanorod is with typical width of about 100 nm, thickness of about 40 nm, and length longer than 1 μm. The effects of reaction temperature, reaction time, and the concentration of NaOH and EDTA on the sizes and morphologies of the products have been investigated. The possible formation mechanism of the nanorod bundles was suggested. Spindlelike Y2O3 nanorod bundles were obtained after thermal treatment of the as-obtained Y(OH)3 nanorod bundles at 700 °C for 4 h. X-ray powder diffraction (XRD) results demonstrate that the as-prepared Y(OH)3 and Y2O3 are attributed to hexagonal phase and cubic phase, respectively. Eu3+ doped Y2O3 nanorod bundles were also prepared and their photoluminescence (PL) properties were investigated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Adachi GY, Imanaka N (1998) Chem Rev 98:1479

    CAS  Article  Google Scholar 

  2. Wang X, Li YD (2002) Angew Chem Int Ed 41:4790

    CAS  Article  Google Scholar 

  3. Hasegawa Y, Thongchant S, Wada Y, Tanaka H, Kawai T, Sakata T, Mori H, Yanagida S (2002) Angew Chem Int Ed 41:2073

    CAS  Article  Google Scholar 

  4. Kim BN, Hiraga K, Morita K, Sakka Y (2001) Nature 413:288

    CAS  Article  Google Scholar 

  5. Rosenflanz A, Frey M, Endres B, Anderson T, Richards E, Schardt C (2004) Nature 430:761

    CAS  Article  Google Scholar 

  6. Lin TS, Sobotka LG, Froncisz W (1988) Nature 33:321

    Google Scholar 

  7. Edwin Suresh Raj AM, Maria Magdalane C, Nagaraja KS (2002) Phys Status Solid A 191:230

    Article  Google Scholar 

  8. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Nature 432:488

    CAS  Article  Google Scholar 

  9. Silver J, Martinez-Rubio MI, Ireland TG, Fern GR, Withnall R (2001) J Phys Chem B 105:948

    CAS  Article  Google Scholar 

  10. Bolchouchine VA, Goldburt ET, Levonovitch BN, Litchmanova VN, Sochtine NP (2000) J Lumin 87–89:1277

    Article  Google Scholar 

  11. Wang X, Sun XM, Yu DP, Zou BS, Li YD (2003) Adv Mater 15:1442

    CAS  Article  Google Scholar 

  12. Fang YP, Xu AW, You LP, Song RQ, Yu JC, Zhang HX, Li Q, Liu HQ (2003) Adv Funct Mater 13:955

    CAS  Article  Google Scholar 

  13. Li W, Wang X, Li Y (2004) Chem Commun 2:164

    Article  Google Scholar 

  14. Wu XC, Tao YR, Gao F, Dong L, Hu Z (2005) J Cryst Growth 277:643

    CAS  Article  Google Scholar 

  15. Li Q, Feng C, Jiao Q, Guo L, Liu C, Xu HB (2004) Phys Status Solidi A 201:3055

    CAS  Article  Google Scholar 

  16. Xue B, Song HW, Yu LX, Yang LM, Liu ZX, Pan GH, Lu SZ, Ren XG, Lei YH, Fan LB (2005) J Phys Chem B 109:15236

    Article  Google Scholar 

  17. Wan JX, Wang ZH, Chen XY, Mu L, Qian YT (2005) J Cryst Growth 284:538

    CAS  Article  Google Scholar 

  18. Xu ZX, Hong ZL, Zhao QC, Peng LX, Zhang PY (2006) J Rare Earths 24:111

    CAS  Article  Google Scholar 

  19. Han M, Shi NE, Zhang WL, Li BJ, Sun JH, Chen KJ, Zhu JM, Wang X, Xu Z (2008) Eur Chem J 14:1615

    CAS  Article  Google Scholar 

  20. He Y, Tian Y, Zhu Y (2003) Chem Lett 32:862

    CAS  Article  Google Scholar 

  21. Si R, Zhang YW, You LP, Yan CH (2005) Angew Chem Int Ed 44:3256

    CAS  Article  Google Scholar 

  22. Zhang J, Liu ZG, Lin J, Fang JY (2005) Cryst Growth Des 5:1527

    CAS  Article  Google Scholar 

  23. Hu CQ, Gao ZH (2006) J Mater Sci 41:6126. doi:https://doi.org/10.1007/s10853-006-0450-8

    CAS  Article  Google Scholar 

  24. Yi GS, Lu HC, Zhao SY, Yue G, Wang WJ, Chen DP, Guo LH (2004) Nano Lett 4:2191

    CAS  Article  Google Scholar 

  25. Yang J, Quan ZW, Kong DY, Liu XM, Lin J (2007) Cryst Growth Des 7:730

    CAS  Article  Google Scholar 

Download references

Acknowledgements

S. L. Zhong acknowledges the funding support from Projects under Scientific and Technological Planning of Education Office of Jiangxi Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengliang Zhong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhong, S., Wang, S., Xu, H. et al. Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties. J Mater Sci 44, 3687–3693 (2009). https://doi.org/10.1007/s10853-009-3493-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3493-9

Keywords

  • Y2O3
  • NaYF4
  • EDTA Concentration
  • Facile Hydrothermal Method
  • Yttrium Hydroxide