Skip to main content
Log in

Long-term performance of polyetheretherketone-based polymer electrolyte membrane in fuel cells at 95 °C

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A poly(styrenesulfonic acid)-grafted polyetheretherketone (ssPEEK) polymer electrolyte membrane was developed by radiation grafting of ethyl styrenesulfonate (ETSS) onto PEEK film and subsequent hydrolysis. The long-term durability of the ssPEEK electrolyte membrane was tested in a fuel cell at 95 °C, during which it exhibited a lifetime of more than 1000 h and a slow voltage degradation of 18 μV h−1 at a current density of 0.3 A cm−2. After durability test, the catalyst layers were analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM); the polymer electrolyte membrane was investigated by determining the change in thickness, proton conductivity, and amounts of sulfonic acid groups. It was concluded that the degradation of performance in fuel cell was due to the thermal aging of the hydrocarbon polymer electrolyte membrane being exposed to the electrochemical environment with the pure oxygen acting as the oxidant gas, as well as the Nafion-based catalyst layer being subjected to high temperature for a long time, where the Pt catalyst was aggregated and sintered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Savadogo O (2004) J Power Sources 127:135

    Article  CAS  Google Scholar 

  2. Li Q, He R, Jensen JO, Bjerrum J (2003) Chem Mater 15:4896

    Article  CAS  Google Scholar 

  3. Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida WA (2008) J Power Sources 184:104

    Article  CAS  Google Scholar 

  4. Bi W, Fuller TF (2008) J Electrochem Soc 155:B215

    Article  CAS  Google Scholar 

  5. Lakshmanan B, Huang W, Olmeijer D, Weidner JW (2003) Electrochem Solid State Lett 6:A282

    Article  CAS  Google Scholar 

  6. Endoh E (2008) ECS Trans 12:41

    Article  CAS  Google Scholar 

  7. Schmidt T, Baurmeister J (2008) J Power Sources 176:428

    Article  CAS  Google Scholar 

  8. Roziere J, Jones DJ (2003) Annu Rev Mater Res 33:503

    Article  CAS  Google Scholar 

  9. Zhang L, Mukerjee S (2006) J Electrochem Soc 153:A1062

    Article  CAS  Google Scholar 

  10. Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M (2006) J Am Chem Soc 128:1762

    Article  CAS  Google Scholar 

  11. Sethuraman VA, Weidner JW, Haug AT, Protsailo LV (2008) J Electrochem Soc 155:B119

    Article  CAS  Google Scholar 

  12. Bauer B, Jones DJ, Rozière J, Tchicaya L, Alberti G, Casciola M, Massinelli L, Peraio A, Besse S, Ramunni E (2000) J New Mater Electrochem Syst 3:93

    CAS  Google Scholar 

  13. Wang F, Hickner M, Kim Y, Zawodzinski TA, McGrath JE (2002) J Membr Sci 197:231

    Article  CAS  Google Scholar 

  14. Li W, Fu Y, Manthiram A, Guiver MD (2009) J Electrochem Soc 156:B258

    Article  CAS  Google Scholar 

  15. Chen J, Maekawa Y, Asano M, Yoshida M (2007) Polymer 48:6002

    Article  CAS  Google Scholar 

  16. Chen J, Asano M, Maekawa Y, Yoshida M (2008) J Membr Sci 319:1

    Article  CAS  Google Scholar 

  17. Chen J, Asano M, Yamaki T, Yoshida M (2006) J Mater Sci 41:1289. doi:https://doi.org/10.1007/s10853-005-2573-8

    Article  CAS  Google Scholar 

  18. Septiani U, Chen J, Asano M, Maekawa Y, Yoshida M, Kubota H (2007) J Mater Sci 42:1330. doi:https://doi.org/10.1007/s10853-006-1196-z

    Article  CAS  Google Scholar 

  19. Prater K (1990) J Power Source 29:239

    Article  CAS  Google Scholar 

  20. Yu J, Yi B, Xing D, Liu F, Chao Z, Fu Y, Zhang H (2003) Phys Chem Chem Phys 5:611

    Article  CAS  Google Scholar 

  21. Li J, Matsuura A, Kakigi T, Miura T, Oshima A, Washio M (2006) J Power Sources 161:99

    Article  CAS  Google Scholar 

  22. Büchi FN, Gupta B, Haas O, Scherer GG (1995) Electrochim Acta 40:345

    Article  Google Scholar 

  23. Gubler L, Kuhn H, Schmidt TJ, Scherer GG, Brack HP, Simbeck K (2004) Fuel Cells 4:196

    Article  CAS  Google Scholar 

  24. Kim BN, Lee DH, Han DH (2008) J Electrochem Soc 155:B680

    Article  CAS  Google Scholar 

  25. Chen J, Asano M, Yamaki T, Yoshida M (2006) J Membr Sci 269:194

    Article  CAS  Google Scholar 

  26. Chen J, Asano M, Yamaki T, Yoshida M (2006) J Power Sources 158:69

    Article  CAS  Google Scholar 

  27. Ramani V, Swier S, Shaw MT, Weiss RA, Kunz HR, Fenton JM (2008) J Electrochem Soc 155:B532

    Article  CAS  Google Scholar 

  28. Shao Y, Yin G, Wang Z, Gao Y (2007) J Power Sources 167:235

    Article  CAS  Google Scholar 

  29. Aricò S, Stassi A, Modica E, Ornelas R, Gatto I, Passalacqua E, Antonucci V (2008) J Power Sources 178:525

    Article  Google Scholar 

  30. Franco A, Gerard M (2008) J Electrochem Soc 155:B367

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Zhai, M., Asano, M. et al. Long-term performance of polyetheretherketone-based polymer electrolyte membrane in fuel cells at 95 °C. J Mater Sci 44, 3674–3681 (2009). https://doi.org/10.1007/s10853-009-3490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3490-z

Keywords

Navigation