Journal of Materials Science

, Volume 44, Issue 13, pp 3528–3532 | Cite as

Influence of NaOH on the synthesis of Bi2Te3 via a low-temperature aqueous chemical method

  • Lina Zhou
  • Xiaobin ZhangEmail author
  • Xinbing Zhao
  • Tiejun Zhu
  • Yongqiang Qin


NaOH was used to adjust the pH of the solution in the synthesis of nanostructured Bi2Te3 alloys via hydrothermal and solvothermal process. However, it is still elusive whether NaOH is necessary and how it affects on the size and morphology of Bi2Te3 which contributes a lot to the thermoelectric figure of merit ZT. The present work suggested that bulk quantity of nanostructured Bi2Te3 with considerable uniform morphology of nanoflake could be yielded without NaOH when the reaction time ranged from 6 h to 48 h. These nanoflakes have about 10–30 nm thickness and 50–300 nm width. When adding NaOH, the morphology of Bi2Te3 becomes various.


Bi2Te3 Sb2Te3 BiOCl Bismuth Telluride Thermoelectric Figure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Major Foundation Research Project (“973”) (2007CB607502).


  1. 1.
    Tritt TM (1999) Science 283:804CrossRefGoogle Scholar
  2. 2.
    DiSalvo FJ (1999) Science 285:703CrossRefGoogle Scholar
  3. 3.
    Zou H, Rowe DM, Min G (2001) J Vac Sci Technol A 19:899CrossRefGoogle Scholar
  4. 4.
    Alkhalfioui M, Michez A, Giani A, Boyer A, Foucaran A (2003) Sens Actuators A Phys 107:36CrossRefGoogle Scholar
  5. 5.
    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Nature 413:597CrossRefGoogle Scholar
  6. 6.
    Yamashita O, Odahara H (2007) J Mater Sci 42:3520. doi: CrossRefGoogle Scholar
  7. 7.
    Hicks LD, Dresselhaus MS (1993) Phys Rev B 47:12727CrossRefGoogle Scholar
  8. 8.
    Harman TC, Taylor PJ, Walsh MP, LaForge BE (2002) Science 197:2229CrossRefGoogle Scholar
  9. 9.
    Cao YQ, Zhao XB, Zhu TJ, Zhang XB, Tu JP (2008) Appl Phys Lett 92:143Google Scholar
  10. 10.
    Zhang HT, Luo XG, Wang CH, Xiong YM, Li SY, Chen XH (2004) J Cryst Growth 265:558CrossRefGoogle Scholar
  11. 11.
    Ji XH, Zhao XB, Zhang YH, Lu BH, Ni HL (2005) J Alloy Compd 387:282CrossRefGoogle Scholar
  12. 12.
    Deng Y, Nan CW, Guo L (2004) Chem Phys Lett 383:572CrossRefGoogle Scholar
  13. 13.
    Zhao XB, Ji XH, Zhang YH, Lu BH (2004) J Alloy Compd 368:349CrossRefGoogle Scholar
  14. 14.
    Jiang Y, Zhu YJ (2007) J Cryst Growth 306:351CrossRefGoogle Scholar
  15. 15.
    Zhao XB, Sun T, Zhu TJ (2005) J Mater Chem 15:1621CrossRefGoogle Scholar
  16. 16.
    Cao YQ, Zhu TJ, Zhao XB (2008) J Alloy Compd 449:109CrossRefGoogle Scholar
  17. 17.
    JI X, Zhang B, Tritt TM (2007) J Electron Mater 36:721CrossRefGoogle Scholar
  18. 18.
    Deng Y, Nan CW, Wei GD (2003) Chem Phys Lett 37:4410Google Scholar
  19. 19.
    Ha YC, Sohn HJ, Jeong GJ (2000) J Appl Electrochem 30:315CrossRefGoogle Scholar
  20. 20.
    Handle B, Broderick G, Paschen P (1997) Hydrometallurgy 46:105CrossRefGoogle Scholar
  21. 21.
    Zhao XB, Ji XH, Zhang YH (2005) Appl Phys A Mater Sci Process 80:1567CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lina Zhou
    • 1
  • Xiaobin Zhang
    • 1
    Email author
  • Xinbing Zhao
    • 1
  • Tiejun Zhu
    • 1
  • Yongqiang Qin
    • 1
  1. 1.State Key Laboratory of Silicon Materials, Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations