Journal of Materials Science

, Volume 44, Issue 12, pp 3141–3147 | Cite as

Polyurethane foam containing microencapsulated phase-change materials with styrene–divinybenzene co-polymer shells

  • Ming You
  • XingXiang ZhangEmail author
  • JianPing Wang
  • XueChen Wang


Polyurethane (PU) foam containing phase change materials is a kind of new heat-insulating material which can store and release heat energy. The microencapsulated n-octadecane (MicroPCMs) with a styrene (St)–divinybenzene (DVB) co-polymer shell was synthesized by means of suspension-like polymerization. The surface morphology, diameter, enthalpy, and thermal stability were investigated by using scanning electronic microscope (SEM), differential scanning calorimeter (DSC), and TGA. The average diameter of the microcapsules is about 80 μm. The enthalpy of the microcapsule is about 126 J/g. PU foams containing MicroPCMs were fabricated by adding the MicroPCMs in reactants. MicroPCMs are evenly inserted inside the foam and the enthalpy of the foam rises with the increase of the content of microcapsules. The enthalpy is about 24 J/g for the foam containing 26.8 wt% MicroPCMs.


Foam Differential Scanning Calorimeter Melamine Discontinuous Phase Dibutyltin Dilaurate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are thankful to the National Natural Science Found of China (No. 50573058) and Specialized Research Found for the Doctoral Program of Higher Education (No.20050058004) for the financial supports.


  1. 1.
    Benita S (1996) Microencapsulation: methods and industrial applications. Marcel Dekker Inc, New York, p 1Google Scholar
  2. 2.
    Chaurasia PBL (1981) Res Ind 26:159Google Scholar
  3. 3.
    Johnson CH, Eichelberger JL (1985) US Patent 4,505,953Google Scholar
  4. 4.
    Hittle DC, André TL (2002) ASHRAS Trans Res 180:175Google Scholar
  5. 5.
    Zhang XX, Wang XC, Tao XM, Yick KL (2005) J Mater Sci 40:3729. doi: CrossRefGoogle Scholar
  6. 6.
    Zhang XX, Tao XM, Yick KL, Wang XC (2006) Textile Res J 76:351CrossRefGoogle Scholar
  7. 7.
    Kim J, Cho G (2002) Textile Res J 72:1093CrossRefGoogle Scholar
  8. 8.
    Zhang XX, Li Y, Tao XM, Yick KL (2005) Indian J Fiber Textile Res 30:377Google Scholar
  9. 9.
    Bryant YG, Colvin DP (1996) US Patent 5,499,460Google Scholar
  10. 10.
    Nuckols ML (1999) Ocean Eng 26:547CrossRefGoogle Scholar
  11. 11.
    Pause B (1999) Med Text September: 23Google Scholar
  12. 12.
    You M, Wang XC, Jiang BN, Zhang XX (2007) New Chem Mater 35:53Google Scholar
  13. 13.
    You M, Zhang XX, Li W, Wang XC (2008) Thermochim Acta 472:20CrossRefGoogle Scholar
  14. 14.
    Qian WJ, Chen HM, Xiong YQ (2005) J Hunan Univ (Nat Sci Ed) 32:69Google Scholar
  15. 15.
    Zhang XX, Fan YF, Tao XM, Yick KL (2004) Mater Chem Phys 88:300CrossRefGoogle Scholar
  16. 16.
    Sánchez L, Sánchez P, Carmona M (2008) Colloid Polym Sci 286:1435CrossRefGoogle Scholar
  17. 17.
    Zhang XX, Tao XM, Yick KL, Fan YF (2005) J Appl Polym Sci 97:390CrossRefGoogle Scholar
  18. 18.
    Yamagishi Y, Sugeno T, Ishige T (1996) IEEE 96082 2077Google Scholar
  19. 19.
    Zhang XX, Tao XM, Yick KL, Wang XC (2004) Colloid Polym Sci 282:330CrossRefGoogle Scholar
  20. 20.
    Fan YF, Zhang XX, Wu SZ, Wang XC (2005) Thermochim Acta 429:25CrossRefGoogle Scholar
  21. 21.
    Wu RD, Tong XL, Zhang JK, Liu GB (2005) China Elastomerics 15:5Google Scholar
  22. 22.
    Wang X, Ge HY (2004) China Plast Ind 32:20Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ming You
    • 1
  • XingXiang Zhang
    • 1
    Email author
  • JianPing Wang
    • 1
  • XueChen Wang
    • 1
  1. 1.Tianjin Municipal Key Lab of Modification and Functional FibersTianjin Polytechnic UniversityTianjinPeople’s Republic of China

Personalised recommendations