Journal of Materials Science

, Volume 44, Issue 12, pp 3118–3124 | Cite as

Preparation and characterization of poly(vinyl chloride) calcium carbonate nanocomposites via melt intercalation

  • C. B. Patil
  • U. R. Kapadi
  • D. G. Hundiwale
  • P. P. MahulikarEmail author


Calcium carbonate was synthesized by in situ deposition technique and its nano size (35–60 nm) was confirmed by transmission electron microscopy (TEM). Composites of the filler CaCO3 (micro and nano) and the matrix poly(vinyl chloride) (PVC) were prepared with different filler loadings (0–5 wt%) by melt intercalation. Brabender torque rheometer equipped with an internal mixer has been used for preparation of formulations for composites. The effect of filler content both nano- and micro level on the nanostructure and properties is reported here. The nanostructures were studied by wide angle X-ray diffraction and scanning electron microscopy. The mechanical, thermal, and dynamic mechanical properties of PVC/micro- and nano-CaCO3 composites were characterized using universal testing machine, thermogravimetric analyzer, and dynamic mechanical analyzer. The results of thermal analysis indicated that the thermal stability of PVC/nano-CaCO3 composites was improved as compared with corresponding microcomposites, and that of pristine PVC and maximum improvement was obtained at 1 and 3 phr loadings. However, the tensile strength decreased significantly with increase loading of both nano- and micro-CaCO3, whereas storage modulus and glass transition temperature increased significantly.


Calcium Carbonate Storage Modulus Nanoscale Filler Commercial CaCO3 External Lubricant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors thank the University Grants Commissions, New Delhi, for providing financial assistance under grants of Special Assistance Programme (SAP) at Departmental Research Support (DRS) Level.


  1. 1.
    Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) J Compos Mater 40:1511CrossRefGoogle Scholar
  2. 2.
    Ray SS, Okamato M (2003) Prog Polym Sci 28:1539CrossRefGoogle Scholar
  3. 3.
    Dezhen W, Xiaodong W, Yongzhi S, Riguang J (2004) J Appl Polym Sci 92:2714CrossRefGoogle Scholar
  4. 4.
    Cheng-Ho C, Chih-Chun T, Shun-Fua S, Wen-Chang W, Chien-Hsin Y (2006) J Polym Sci Part B: Polym Phys 44:451CrossRefGoogle Scholar
  5. 5.
    Sun S, Li C, Zhang L, Du HL, Burnell-Gray JS (2006) Polym Int 55:158CrossRefGoogle Scholar
  6. 6.
    Xie XL, Liu QX, Li RKY, Zhou XP, Zhang QX, Yu ZZ, Mai YW (2004) Polymer 45:6665CrossRefGoogle Scholar
  7. 7.
    Ling Z, Xuehua C, Chunzhung L (2005) J Mater Sci 40:2097. doi: CrossRefGoogle Scholar
  8. 8.
    Chan CM, Wu J, Li JX, Cheung YK (2002) Polymer 43:2981CrossRefGoogle Scholar
  9. 9.
    Mishra S, Sonwane SH, Singh RP (2005) J Polym Sci Part B: Polym Phys 43:107CrossRefGoogle Scholar
  10. 10.
    Saujanya C, Ashamol S, Padalkar S, Radhakrishnan S (2001) Polymer 42:2255CrossRefGoogle Scholar
  11. 11.
    Saujanya C, Radhakrishan S (2001) Polymer 42:6723CrossRefGoogle Scholar
  12. 12.
    Cheng-Ho C, Chih-Chun T, Chien-Hsin YJ (2005) Polym Sci Part B: Polym Phys 43:1465CrossRefGoogle Scholar
  13. 13.
    Cheng-Ho C, Chih-Chun T, Ming-Shyong T, Fu-Su Y (2006) J Polym Sci Part B: Polym Phys 44:2145CrossRefGoogle Scholar
  14. 14.
    Mingwang P, Xudong S, Xiucuo L, Haiyan H, Liucheng Z (2004) J Appl Polym Sci 94:277CrossRefGoogle Scholar
  15. 15.
    Yong-Zhong B, Zhi-Miang H, Zhi-Xue W (2006) J Appl Polym Sci 102:1471CrossRefGoogle Scholar
  16. 16.
    Tianbin R, Jung Y, Yanxia H, Jie R, Yan L (2006) J Polym Compos 27:55CrossRefGoogle Scholar
  17. 17.
    Zhu-Mei L, Chao-Ying W, Yong Z, Ping W, Jie Y (2004) J Appl Polym Sci 92:567CrossRefGoogle Scholar
  18. 18.
    Chaoying W, Xiuying Q, Yong Z, Yinxi Z (2003) J Appl Polym Sci 89:2184CrossRefGoogle Scholar
  19. 19.
    Haiyan H, Mingwang P, Xiucuo Li, Xudong S, Liucheng Z (2004) Polym Int 53:225CrossRefGoogle Scholar
  20. 20.
    Jie R, Yanxia H, Yan L, Xiaozhen T (2005) Polym Test 24:316CrossRefGoogle Scholar
  21. 21.
    Peprnicek T, Duchet J, Kovarova L, Malac J, Gerard JF, Simonik J (2006) Polym Degrad Stab 91:1855CrossRefGoogle Scholar
  22. 22.
    Yalcin B, Cakmak M (2004) Polymer 45:6623CrossRefGoogle Scholar
  23. 23.
    Gong FL, Zhao CG, Feng M, Qin HL, Yang MS (2004) J Mater Sci 39:293. doi: CrossRefGoogle Scholar
  24. 24.
    Asif KM, Sarwar MI, Rafiq S, Ahmad Z (1998) Polym Bull 40:583CrossRefGoogle Scholar
  25. 25.
    Peng L, Mingfei Z, Jinshan G (2006) J Macromol Sci Part B: Phys 45:1135CrossRefGoogle Scholar
  26. 26.
    Guangming C (2007) J Appl Polym Sci 106:817CrossRefGoogle Scholar
  27. 27.
    Chaoying W, Xiuying Q, Yong Z, Yinxi Z (2003) Polym Test 22:453CrossRefGoogle Scholar
  28. 28.
    Chaoying W, Yong Z, Yinxi Z (2004) Polym Test 23:299CrossRefGoogle Scholar
  29. 29.
    Dongyan W, Daniel P, Qian Y, Charles AW (2002) J Vinyl Addit Technol 8–2:139Google Scholar
  30. 30.
    Dongyan W, Daniel P, Qian Y, Charles AW (2001) J Vinyl Addit Technol 7–4:203Google Scholar
  31. 31.
    Dongyan W, Charles AW (2002) J Vinyl Addit Technol 8–4:238Google Scholar
  32. 32.
    Ismail H, Munusamy Y (2007) J Reinf Plast Compos 26:1681CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • C. B. Patil
    • 1
  • U. R. Kapadi
    • 1
  • D. G. Hundiwale
    • 1
  • P. P. Mahulikar
    • 1
    Email author
  1. 1.School of Chemical SciencesNorth Maharashtra UniversityJalgaonIndia

Personalised recommendations