Journal of Materials Science

, Volume 44, Issue 12, pp 3072–3076 | Cite as

The role of friction to the indentation size effect in amorphous and crystallized Pd-based alloy

  • Ning LiEmail author
  • L. Liu
  • M. Zhang


The role of friction between the indenter and the test specimen in amorphous and crystallized Pd40Cu30Ni10P20 alloy was investigated through instrumented nanoindentation under unlubricated and lubricated conditions. It was found that the reduction of hardness with the increasing penetration depth, i.e., the indentation size effect (ISE), becomes milder in the lubricated test than that in the unlubricated measurement. The important role of friction that related to the surface area to volume (S/V) was discussed in terms of the proportional specimen resistance (PSR) model and energy dissipation.


Metallic Glass Strain Gradient Indentation Depth Lubricate Condition Indentation Size Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the National Nature Science Foundation of China under Grant No. 50635020. The work was also partially supported by the funding from the Department of Industrial System and Engineering, the Hong Kong Polytechnic University. The authors are grateful to the Analytical and Testing Center, Huazhong University of Science and Technology for their technical assistance.


  1. 1.
    Schuh CA, Nieh TG (2004) J Mater Res 19:46CrossRefGoogle Scholar
  2. 2.
    Schuh CA (2006) Mater Today 9:32CrossRefGoogle Scholar
  3. 3.
    Joshi SS, Melkote SN (2004) J Manuf Sci Eng 126:679CrossRefGoogle Scholar
  4. 4.
    Nix WD, Gao H (1998) J Mech Phys Solids 46:411CrossRefGoogle Scholar
  5. 5.
    Gao H, Huang Y, Nix WD (1999) Naturwissenschaften 86:507CrossRefGoogle Scholar
  6. 6.
    Gao H, Huang Y, Nix WD et al (1999) J Mech Phys Solids 47:1239CrossRefGoogle Scholar
  7. 7.
    Li H, Ghosh A, Han YH et al (1993) J Mater Res 8:1028CrossRefGoogle Scholar
  8. 8.
    Atkinson M (1995) J Mater Res 10:2908CrossRefGoogle Scholar
  9. 9.
    Gerberich WW, Tymiak NI, Grunlan JC et al (2002) J Appl Mech 69:433CrossRefGoogle Scholar
  10. 10.
    Skinner J, Gane N (1972) J Phys D: Appl Phys 5:2087CrossRefGoogle Scholar
  11. 11.
    Bull SJ, Page TF, Yoffe EH et al (1989) Philos Mag Lett 59:281CrossRefGoogle Scholar
  12. 12.
    Wei YG, Wang XZ, Zhao MH (2004) J Mater Res 19:208CrossRefGoogle Scholar
  13. 13.
    Wright WJ, Saha R, Nix WD (2001) Mater Trans 42:642CrossRefGoogle Scholar
  14. 14.
    Spaepen F (1977) Acta Metall 25:407CrossRefGoogle Scholar
  15. 15.
    Concustell A, Sort J, Alcalá G et al (2005) J Mater Res 20:2719CrossRefGoogle Scholar
  16. 16.
    Bei H, Xie S, George EP (2006) Phys Rev Lett 96:105503CrossRefGoogle Scholar
  17. 17.
    Van Steenberge N, Sort J, Concustell A et al (2007) Scr Mater 56:605CrossRefGoogle Scholar
  18. 18.
    Yang FQ, Geng KB, Law PK et al (2007) Acta Mater 55:321CrossRefGoogle Scholar
  19. 19.
    Lam DCC, Chong ACM (2001) Mater Sci Eng A 318:313CrossRefGoogle Scholar
  20. 20.
    Li N, Chan KC, Liu L (2008) J Phys D: Appl Phys 41:155415CrossRefGoogle Scholar
  21. 21.
    Li N, Liu L, Chan KC et al (2009) J Mater Res (online)Google Scholar
  22. 22.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  23. 23.
    Li H, Bradt RC (1993) J Mater Sci 28:917. doi: CrossRefGoogle Scholar
  24. 24.
    Shi H, Atkinson M (1990) J Mater Sci 25:2111. doi: CrossRefGoogle Scholar
  25. 25.
    Sangwal K, Surowsk B, Błaziak P (2002) Mater Chem Phys 77:511CrossRefGoogle Scholar
  26. 26.
    Fröhlich F, Grau P, Grellmann W (1977) Phys Stat Sol 42:79CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Lab for Materials Processing and Die and Mould TechnologyHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations