Skip to main content

Electrochemical polymerizatıon of hexachloroethane to form poly(hydridocarbyne): a pre-ceramic polymer for diamond production

Abstract

Due to its structural similarity with diamond, poly(hydridocarbyne) (PHC), which is sp3-hybridized, is a unique polymer that can be easily converted to diamond and diamond-like-carbon ceramics upon heating. PHC can be easily synthesized via the electrochemical polymerization of chloroform as previously reported. Here, we report the electrosynthesis of PHC from hexachloroethane. Since hexachloroethane has six chlorine atoms in its structure, polymerization takes place through the carbons simultaneously. Thus, the polymer is bigger in chain length than PHC obtained from the polymerization of chloroform. UV-vis, FTIR, and NMR spectroscopy were utilized to determine the polymer structure. Conversion of the polymer to diamond was accomplished by heating at 1000 °C under a nitrogen atmosphere as confirmed by Optical Microscopy and Raman analysis. XRD studies showed that the product is an assortment of diamond forms.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Nur Y, Pitcher MW, Seyyidoğlu S, Toppare L (2008) J Macromol Sci A: Pure Appl Chem 45:358

    CAS  Article  Google Scholar 

  2. Pitcher MW, Toppare L, PCT Patent WIPO-PCT/TR2007/00012-WO2008010781A

  3. Katzenmeyer A, Bayam Y, Logeeswaran VJ et al (2009) J Nanomater. Article ID 832327. doi:https://doi.org/10.1155/2009/832327

    Article  Google Scholar 

  4. Krüger A, Liang Y, Jarre G, Steyk J (2006) J Mater Chem 16:2322

    Article  Google Scholar 

  5. Loh KP, Zhao SL, De Zhang W (2004) Diamond Relat Mater 13:1075

    CAS  Article  Google Scholar 

  6. Çağın T, Che J, Gardos MN, Fijany A, Goddard WAIII (1999) Nanotechnology 10:278

    Article  Google Scholar 

  7. Pitcher MW, Joray SJ, Bianconi PA (2004) Adv Mater 16:706

    CAS  Article  Google Scholar 

  8. Robertson J (2002) Mater Sci Technol 37:129

    Google Scholar 

  9. Donnet JB, Paulmier D, Oulanti H, Huu TL (2004) Carbon 42:2215

    CAS  Article  Google Scholar 

  10. Donnet JB, Fousson E, Wang TK et al (2000) Diamond Relat Mater 9:887

    CAS  Article  Google Scholar 

  11. Sawaoka BA, Takamatsu M, Akashi T (1994) Adv Mater 6:346

    CAS  Article  Google Scholar 

  12. Little BR, Roache J (2008) J Prog Solid State Chem 36:223

    CAS  Article  Google Scholar 

  13. Cudzilo S, Huczko A, Pakula M et al (2007) Carbon 45:103

    CAS  Article  Google Scholar 

  14. Liu S, Xie E, Sun J et al (2003) Mater Lett 57:1662

    CAS  Article  Google Scholar 

  15. Donnet JB, Oulanti H, Le Huu T, Schmitt M (2006) Carbon 44:374

    CAS  Article  Google Scholar 

  16. Schmitt M, Paulmier D, Le Huu T (1999) Thin Solid Films 343–344:226

    Article  Google Scholar 

  17. Das D, Singh RN (2007) Int Mater Rev 52:29

    CAS  Article  Google Scholar 

  18. Auciello O, Birrell J, Carlisle JA, Gerbi JE, Xiao X, Peng B, Espinosa HD (2004) J Phys Condens Matter 16:539

    Article  Google Scholar 

  19. Polini R, Amar M, Ahmed W et al (2005) Thin Solid Films 489:116

    CAS  Article  Google Scholar 

  20. Visscher GT, Bianconi PA (1994) J Am Chem Soc 116:1805

    CAS  Article  Google Scholar 

  21. Bianconi PA, Joray SJ, Aldrich BL et al (2004) J Am Chem Soc 126:3191

    CAS  Article  Google Scholar 

  22. Ma M, Shi G, Xi C (2003) J Appl Polym Sci 89:16

    CAS  Article  Google Scholar 

  23. Best SA, Bianconi PA, Merz KM Jr (1995) J Am Chem Soc 117:9251

    CAS  Article  Google Scholar 

  24. Donnet JB, Fousson E, Delmotte L et al (2000) C R Acad Sci (Paris) 3:831

    CAS  Google Scholar 

  25. Dahl JEP, Moldowan JM, Peakman TM et al (2003) Angew Chem Int Ed 42:2040

    CAS  Article  Google Scholar 

  26. Paik N (2005) Surf Coat Technol 200:2170

    CAS  Article  Google Scholar 

  27. Prawer S, Nugent KW, Jamieson D et al (2000) Chem Phys Lett 332:93

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mustafa Genişel for Raman analysis and discussions and to Dr. Ertuğrul Şahmetlioğlu for GPC analysis and to Mehmet Nur for his kind support to Middle East Technical University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levent K. Toppare.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nur, Y., Cengiz, H.M., Pitcher, M.W. et al. Electrochemical polymerizatıon of hexachloroethane to form poly(hydridocarbyne): a pre-ceramic polymer for diamond production. J Mater Sci 44, 2774–2779 (2009). https://doi.org/10.1007/s10853-009-3364-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3364-4

Keywords

  • Diamond Film
  • Nuclear Magnetic Resonance Spectroscopy
  • LiAlH4
  • High Intensity Ultrasound
  • Hexachloroethane